内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书是根据高等教育本科线性代数课程的教学基本要求编写而成的.主要内容有:n阶行列式、矩阵与向量、矩阵的运算、线性方程组、相似矩阵与二次型、线性空间与线性变换、矩阵理论与方法的应用. 书后附有部分习题参考答案. 书末的附录中选编了2010~2015年全国硕士研究生入学考试线性代数的部分试题.
本书是根据*颁发的“工科类本科数学基础课程教学基本要求”编写的。 全书内容包括:行列式、矩阵、线性方程组与向量组的线性相关性、相似矩阵与二次型、线性空间与线性变换、数学软件Matlab简介与上机实验,书末附有常用“线性代数”英文专业词汇及部分习题参考答案与提示。 本书可作为高等工科院校工学、经济学、管理学各专业教材或教学参考书,也可作为成人教育的教学用书,还可供工程技术人员自学参考之用。
该书稿是《线性代数(经管类?第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
本书由同济大学数学科学学院线性代数教研室修订。此次修订依据“工科类本科线性代数课程教学基本要求”,参照近年来线性代数课程及教材建设的经验成果,在内容的编排、概念的叙述、符号的规范等诸多方面进行了修订。同时,以二维码的形式,适当增加了一些抽象内容的几何意义和解说性的文字,并新增了课件资源和自测题资源。在保持简明特色的基础上,结构 趋流畅、论述 通俗易懂、资源 丰富饱满,因而 易教易学,也 适应当前的本科线性代数课程的教学。 本书内容包括行列式、矩阵及其运算、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换六章,每章均配有相当数量的习题,书末附有习题参考答案。1至5章 满足教学基本要求,教学时数约34学时。1至5章中用异体字排印的内容供读者选学,第6章带有
《伽罗瓦理论--天才的激情/现代数学基础》编著者章璞。 《伽罗瓦理论--天才的激情/现代数学基础》内容提要:这是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,本书强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和□的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。 本书可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
《抽象代数学》系统地介绍了抽象代数这一重要数学分支的最基本的内容,其中包括群论、环论与域论。在域论这一章中还比较全面地介绍了有限Galois理论,书中还配备了一定数量、难易程度不一的习题,习题均有解答或提示,书后有附录。 《抽象代数学》可供综合性大学、师范大学数学系学生阅读,可作为教材,亦可供理科各系以及信息、通讯工程专业的大学生、研究生及老师参考。