《数学概览:代数基本概念》是沙法列维奇的经典名著之一,目的是对代数学、它的基本概念和主要分支提供一个一般性的全面概述,论述代数学及其在现代数学和其他科学中的地位。 《数学概览:代数基本概念》高度原刨且内容充实,涵盖了代数中所有重要的基本概念,不只是域、群、环、模,而且包括群表示、Lie群与Lie代数、上同调、范畴论等。它不是按照代数教科书的传统模式写的,而是反映了作者的强烈观点:“用基本例子的一批样本,它会表达得更好。这给数学家提供了动机和实质性的定义,同时给出这个概念的真实意义。” 书中共有精心挑选的164个例子和45幅图,给读者提供了物理背景和直觉,通过它们读者能够对抽象的概念产生更深的印象。相对而言,书中只有6个引理和104个定理,而且这些定理往往不加证明,只给出证明思路,这将
本书英语原版*初由美国数学会(American Mathematical Society)出版,原书名是Combinatorial Problems and Exercises: Second Edition, 原书作者是 L szl Lov sz,原书版权声明是 ?1979 held by the American Mathematical Society.本翻译版由高等教育出版社有限公司经美国数学会授权和许可出版。
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系
单变量多项式零点问题本质上是代数的,而在多变量时则变为一种几何。《平面代数曲线》中,作者费舍尔从传统的平面代数曲线出发来进入整个学科,其核心内容是普吕克、克莱布施和诺特的经典公式,它们描述了曲线的各种整体和局部不变量之间的关系。在书中,读者将很快看到代数与几何、分析与拓扑的融合,这正是一种典型的复代数几何。作者特别注重具体的计算方法,全书包含了大量具体的例子和图示。 本书是一本非常**的代数几何入门书,预备知识只包括分析、代数和初等拓扑的基础知识。学习本书可以帮助建立几何直觉,这种直觉往往是产生*多的先进思想和技巧的原因,这在高维变量的学习中会用到。
方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);de Morgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey 拓扑对偶空间理论是一个强有力的工具。为此,作者专门在第八章中给予详细的介绍,并附加一节介绍拓扑学的相关概念和基本性质,力求读者可以不借助拓扑学的教材也能理解、掌握相关的内容。 《格论导引/现代数学基础》内容适合不同层次的读者,可作为数学与计算机类专业本科生或研究生格论课程的教材或教学参考书。
本书是南开大学代数类课程整体规划系列教材的第一本,是在编者多年从事代数类课程及后续代数课程的教学过程中逐渐完成的。在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照代数学发展的主要脉络来安排本书的内容。全书分为8章,包括多项式、行列式、矩阵、线性空间、线性变换、线性函数与双线性函数、Euclid空间和二次曲面等。本书的编写原则是关注数学概念的起源,遵循数学理论的发展历程,强调理论的整体性和内在联系。书中配有大量编者精心挑选的习题和训练与提高题,既有助于强化读者对课程内容的理解,也为后续的代数学课程埋下了大量伏笔。
莫宗坚、蓝以中、赵春来编著的《代数学(下修 订版)/现代数学基础》为《代数学》下册,主要讲述 交换代数的基本知识,内容包括环论、赋值论、 Dedekind整环及同调代数。这些都是交换代数的精华 内容,是学习代数几何、代数数论等现代数学的 基础。 本书内容丰富,直观性强,推理自然,解释详尽 。本书的独到之处是特别注重对于交换代数的背景以 及与其他学科的联系的介绍。书中精选了大量的例题 与习题。 本书可作为高等学校数学专业研究生教材,也可 供数学工作者参考。
本书是一本涉及代数学和编码理论的基础性读物。作者用两章篇幅,以尽量少的抽象数学概念和语言来阐述这些编码理论所需要的代数知识,然后介绍编码理论中的两类码,即第三章的伪*序列和第四章的纠错码。第三章完整地介绍了移位寄存器序列,特别是线性移位寄存器序列的理论。第四章介绍了几类重要的纠错码。后在第五章,介绍了编码理论中出现的几个代数问题。 第三版除校正修订本的排印错误,改进符号表示外,在内容上也做了重要的修改和增补,特别在第三章增加了序列线性复杂度的重要概念,并用这个概念简化了解线性移位寄存器综合问题的Berlekamp-Massey迭代算法的证明 本书可供工程类、信息类打算进入编码理论或密码理论的大学生、研究生作为教学参考书,也可供数学类专业学生和从事编码和密码工作的研究人员参考。
《李群讲义》主要讲述李群的基本理论及其应用,目的就是试图将李群的精要及主要应用作一简明的介绍。全书共分六章。章介绍紧致群的线性表示论。第二章详细说明如何去实现李群结构的线性化和李代数在李群结构论上的基本重要性。第三章中研讨连通紧致李群的伴随变换群的轨几何,它是紧致李群的结构和分类理论的枢纽。第四章得出紧致李群的结构和分类理论(它是李群论的精要,也是在几何、分析领域中具有广泛应用的基础理论。)进而得出复半单李群或实半单李群的理论的推广。第五章用代数的观点,讨论复半单李代数的结构与分类。第六章则涉及实半单李代数的理论,特别是它与对称空间理论的联系。这将有利于读者进一步理解李群论,并使读者在李群理论的应用上得到某种启发。本书适用于数学专业研究生、高年级本科生阅读,也可供相关专
本书分上、下两册出版。 莫宗坚、蓝以中、赵春来编著的《代数学(上第2 版)/现代数学基础》主要讲述近代代数的初步知识, 内容包括集合论与数论、群论、 多项式论、线性代数以及域论。 本书内容丰富,直观性强,推理自然,解释详尽 。此书的独到之处是 特别注重对于代数学的背景、基本思想以及与其他学 科的联系等方面的 介绍。书中精选了大量的例题和习题。本书的起点低 ,由浅入深。具有 高等代数基础知识的读者皆可以阅读本书,进而学到 现代代数学的较大部 分基础知识。 本书可作为高等学校数学系 高年级学生以及研究 生的教材,也可供 数学工作者参考。
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
《代数配边理论(英文版)》是一部很难得的介绍代数配边理论的专著,内容精炼简短。《代数配边理论(英文版)》在讲述了quillen复配边方法后,接着在固定域的光滑变量范畴上引进有向上同调理论的观点,证明了这样一个理论范的存在性叫做代数配边。书中也包括了一些计算和应用案例。
《数论:从同余的观点出发》依据作者多年数论教学心得和研究成果写成。从同余的定义和观点出发,前五章依次讲述整除的算法、同余的性质、同余式理论、平方剩余、原根和n次剩余,后两章是有关素数幂模和整数幂模的同余式,不在通常的初等数论范畴却伸手可触。本书的另一特点是,每节内容都有引人入胜的补充读物,借此拓宽读者的知识面和想象力。这些读物或讲述了某一数论问题的初步知识,如佩尔方程和丢番图数组、阿廷猜想和特殊指数和、椭圆曲线和同余数问题、自守形式和模形式;或介绍了整数理论的新问题和新猜想,如完美数问题、格雷厄姆猜想、哥德巴赫猜想、abc猜想、3x+1问题、华林问题、欧拉数问题、素数链问题、卡塔兰猜想、费尔马大定理等及其延拓。此外,本书重视语言描写,对背景知识和图表予以关注。 《数论:从同余的观
《线性代数解题方法与技巧》按《线性代数》主要内容:行列式、矩阵、线性方程组、矩阵的特征值和二次型进行分类。对全书400余道题目作思维分析、详尽解答、方法总结和题末评注。通过强化训练,旨在提高分析问题、