本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
本书从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
本书主要讨论了代数问题中经常出现的十个主题,每一章都以简短的介绍开始,其中包括一些示例,帮助读者掌握所提出的问题及解法的主要思想。全书分为两部分,第1部分讨论了二次函数,柯西不等式,代数式的极大、极小值问题,复数,拉格朗日恒等式及其应用等内容,并给出相关问题;第2部分为第1部分的所有问题提供了解答。 本书的目标受众包括所有正在接受数学竞赛培训或希望提高代数技能的学生,同时也欢迎数学爱好者参阅。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
本书为代数学引论,其主要内容为线性代数多项式理论,除在第10章介绍了环,城等基本概念外,还在最后一章介绍了群论的初步知识 本书可供高等院校本科生、研究生及数学爱好者参考使用。
代数几何是数学中的核心学科,与数学的众多分支相关。本书是代数几何的入门课本,其目标是在假设读者具有最少预备知识的情况下,介绍概形上凝聚层的上同调理论,为读者学习更专业的代数几何做充分准备。书中涵盖了Grothendieck的经典著作《代数几何原理》(EGA)I-III 中的主要内容,并假设读者熟悉Atiyah和Macdonald编写的《交换代数导论》的第1-8章。本书为第二版,除纠正第一版中的错误、改进表述外,作者还新增了练习题。 本书适合高等院校数学及相关专业作为代数几何的教科书使用。
全书共分两卷,涉及的面很广,可以说概括了1920?1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本书作者是世界著名数学家R. Langlands (朗兰兹) 的弟子。在数学领域中,著名的朗兰兹纲领是一系列影响深远的构想,联系数论、代数几何与约化群表示理论。本书则从数学底层讲述微分方程和代数这两个数学重要分支的内在联系,通过讲述非交换环、单径表示等内容,向读者介绍在一般微分方程和代数的数学书中不常见的内容,展示微分方程和代数的发展史中的光辉一页,立意颇高。 本书是《现代数学基础》系列中的一本,具体内容包括:微分方程与代数、复微分方程、p进微分方程、形式偏微分方程、联络的同调代数、G丛、Simpson对应和微分算子层等,可供数学及相关专业的师生及科研人员使用参考。
本书根据James R.Munkres所著“Elements of Algebraic To-pology”(Perseus出版社1993年版)译出。 全书共分8章74节,内容丰富,论述精辟,主要内容包括单纯同调群及其拓扑不变性、Eilenberg-Steenrod公理系统、奇异同调论、上同调群与上同调环、同调代数、流形上的对偶等。
《代数学方法(*卷) 基础架构》主要目的是介绍代数学中的基本结构,着眼于基础数学研究的实际需求。全书既包括关于群、环、模、域等结构的标准内容,也涉及范畴和赋值理论,在恪守体系法度的同时不忘代数学和其他数学领域的交融。《代数学方法(*卷) 基础架构》可供具有一定基础的数学专业本科生和研究生作为辅助教材、参考书或自学读本之用。
本书为《代数学教程》第五卷,主要讨论我们熟悉的那些多项式:一般域上的多项式、有理数域上的多项式、实数域上的多项式、复数域上的多项式以及多个未知量的多项式等.编者从数学结构的角度出发,以新颖的论述方式讲述了每一类多项式的构造及其性质,用代数观点来叙述全部理论. 本书适合高等院校理工科师生及数学爱好者阅读.
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fi elds奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Morde
本书是一本计算数学名著,作者用摄动理论和向后误差分析方法系统地论述代数特征值问题以及有关的线性代数方程组、多项式零点的各种解法,并对方法的性质作了透彻的分析。本书的内容为研究代数特征值及有关问题提供了严密的理论基础和强有力的工具,全书共分九章,第一章叙述矩阵理论,第二、三章介绍摄动理论和向后舍入误差分析方法,第四章分析线性代数方程组解法,第五章讨论Hermite矩阵的特征值问题,第六、七章研究如何把一般矩阵化为压缩型矩阵及压缩型矩阵的特征值的问题,第八章论述LR和QR算法,最后一章讨论各种迭代法。
本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。 本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅读。
本书为《代数学教程》第六卷,全书系统地讨论了代数学中线性代数的各个内容,如线性方程组理论、矩阵的理论基础、二次型与埃尔米特型、抽象的向量空间、具有度量的线性空间等,在编写过程中作者引用了大量的文献,并附于书末,供读者参考使用. 本书适合高等院校理工科师生及数学爱好者阅读.
本书从有限维空间线性算子的特征值出发, 采用类比、归纳等方式, 通过大量实例循序渐进地引入无穷维空间上线性算子的谱理论, 系统介绍并分析了有界线性算子、共轭算子、正常算子、自共轭算子、紧算子的结构, 讨论了上述这些有界线性算子的谱点分类、谱集的性质和谱分解定理. 进而对闭的线性算子、无界线性算子, 特别是在近代物理学、量子力学中有着深刻应用背景的微分算子的结构、亏指数、自共轭扩张和它们的谱分解加以分析.
交换代数与同调代数是代数学中的重要领域,也是代数几何、代数数论等领域的强大工具,因此是很多不同方向的研究生和研究人员所需要甚至的。本书针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括“硬交换代数”)与同调代数等方面的基本理论,在取材上只注意这些学科中重要且实用的基本内容,而不涉及很专门的课题。在内容的安排上,采取了“低起点,高坡度”的方式。在预备知识方面,只假定读者学过群论和域论(包括伽罗华理论),而从环的基本理论讲起。每一章后面都有若干习题,标有星号的习题在附录B中有解答或提示。
本书为《代数学教程》第三卷,主要讨论我们熟悉的那些数系:自然数集、整数环、有理数域、实数域、复数域,以及超复数等.编者从数学结构的角度出发,以新颖的论述方式讲述了每一种数系的构造(运算)及其性质,建立起了严格、系统的科学数系的逻辑过程.本书适合高等院校理工科师生及数学爱好者阅读.
本书汇集了抽象代数中的大量问题和反例, 主要内容有群论、环论、域和伽罗瓦理论等. 书中通过例子对抽象代数的基本概念进行了比较仔细的对比, 考虑了很多重要定理在不同条件下是否成立的问题, 给出了抽象代数中很多值得深入思考的问题.
本书介绍算子代数与非交换Lp空间的基本内容,共分6章第1章和第2章阐述c*代数的基本理论,包括Gelfand变换、连续函数演算、Jordan分解和GNS构造等内容。第3章和第4章系统论述vonNeumann代数的基本理论,涵盖了核算子、算子代数的局部凸拓扑、Borel函数演算、vonNeumann二次交换子定理和Kaplansky稠密性定理、正规泛码等内容。第5章介绍非交换Lp空间的基本性质,包括非交换测度空间、非交换不等式、非交换Lp空间的对偶性、可测算子以及非交换测度空间的张量积等内容。第6章是若干例子,它们是前述各章内容的补充与综合应用。附录介绍Hilbert空间上紧算子的谱理论。全书内容简练、结构清晰,每个结果都给出详细的证明并且例题充分翔实。