比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
这是一套完整介绍数学分析的教材,内容涉及从实数到流形上的微分形式,其中包括渐近方法、傅立叶分析、拉普拉斯变换、勒让德变换、椭圆函数以及频率分布。本书语言通俗,表达清晰,各章有大量的练习、思考题以及应用实例。
《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方
hepresentbookiasedonlecturesgivenbytheauthorattheUniversityofTokyoduringthepasttenyears.ItisintendedasatextbooktobestudiedbystudentsontheirownortobeusedinacourseonFunctionalAnalysis,i.e.,thegeneraltheoryoflinearoperatorsinfunctionspacestogetherwithsalientfeaturesofitsapplicationtodiversefieldsofmodemandclassicalanalysis.Necessaryprerequisitesforthereadingofthiookaresummarized,withorwithoutproof,inChapter0undertitles:SetTheory,TopologicalSpaces,MeasureSpacesandLinearSpaces.Then,startingwiththechapteronSemi-norms,ageneraltheoryofBanachandHilbertspacesispresentedinconnectionwiththetheoryofgeneralizedfunctionsofS.L.SOBOLEVandL.SCHWARTZ.Whilethebookisprimarilyaddressedtograduatestudents,itishopeditmightproveusefultoresearchmathematicians,bothpureandapplied.Thereadermaypass,e.g.,fromChapterIX(AnalyticalTheory.ofSemi-groups)directlytoChapterXIII(ErgodicTheoryandDiffusionTheory)andtoChapterXIV(IntegrationoftheEquationofEvolution).Suchmaterialsas"WeakTopologiesandDualityinLocallyConvexSpaces"and"NuclearSpaces"areprese
本书深入揭示了小样本多元数据的实质和特点,对多元回归法和现代多种建模方法进行了剖析、比较、验证和拓展,提出了小样本多元数据分析的理论和方法,构建了从不同侧面克服小样本多元数据建模困难的完整的建模方法体系。 全书共8章,包括:绪论,多元线性回归分析,偏二乘回归分析,方差分量线性模型,自变量筛选和综合特征参数模型,贝叶斯统计分析方法,统计学习理论与支持矢量机,其他分析方法的探讨。 本书可供高等院校飞行器设计、系统工程、管理科学与工程、数量经济学和有关专业的本科生及研究生阅读,也可供研究人员、工程技术人员及有关人员参考。
偏微分方程是数学学科的一个重要分支,它与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用.本书主要讲述偏微分方程的一般理论,广义函数与sob01ev空间,椭圆边值问题,能量方法,算子半群等内容,为提高读者的整体数学素质提供了必要的材料,也为部分读者进一步学习与研究偏微分方程理论做了准备。 本书可作为高等院校数学系(数学、应用数学、计算机数学等专业)与有关理工科的研究生教材,也可作为数学、工程等领域的青年教师或科研人员的参考书。
《奇异摄动问题中的空间对照结构理论》由倪明 康、林武忠所著,本书共分4章。章主要介绍奇异 摄动理论的一些基本概念,以及奇异摄动微分方程初 边值问题形式渐近解的构造和余项估计,这些都为引 入空间对照结构理论打下了基础;第2章主要介绍二 阶奇异摄动常微分方程的内部层问题,即阶梯状空间 对照结构,其中包括了阶梯状解的形式渐近解的构造 ,转移点的确定,并用微分不等式方法证明了解的存 在性和给出了余项估计;第3章主要介绍奇异摄动常 微分方程组的阶梯状空间对照结构,其中包括了各种 类型的奇异摄动微分方程组,从二阶奇异摄动微分方 程组着手一直到高阶奇异摄动微分方程组为止,不但 构造了渐近解,而且用缝接法证明了解的存在性;第 4章主要介绍奇异摄动抛物型方程中的转移型空间对 照结构,这里的内容更丰富,所得到的许多结
《泛函分析》(原书第2版)是泛函数分析的经典教材,作为Rudin的分析学经典著作之一,《泛函分析》(原书第2版)秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理,Lamonosov不变子空间定理以及遍历定理等,另外,还适当增加了一些例子和习题。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定律之间
《测度论(英文版)》综合性强,清晰易懂。全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前五章讲述了抽象测度和积分,通过这五章,读者可以说精通积分知识;第六章讲述微分知识,包括Rd上变量的处理。《测度论(英文版)》的特点是初步并且全面的讲述局部紧Hausdorff空间上的积分知识、Polish空间上的解析和Borel子集和局部紧群上的Haar测度。书中提供了学习目前感兴趣的领域,尤其是调和分析和概率论的工具。每章末都附有具有代表性的习题,从常规题型到扩展训练都有,并且对较高难度的习题附有提示。
复杂性理论主要研究决定解决算法问题的必要资源,以及利用可用资源可能得到的结果的界,而对这些界的深入理解可以防止寻求不存在的所谓有效算法。复杂性理论的新分支随着新的算法概念而不断涌现,其产物——如NP一完备性理论——已经影响到计算机科学的所有领域的发展。本书视化为一个关键概念,强调理论与实际应用的相互作用。本书论题始终强调复杂性理论对于当今计算机科学的重要意义,包含各种具体应用。
《奇异摄动问题中的空间对照结构理论》由倪明 康、林武忠所著,本书共分4章。章主要介绍奇异 摄动理论的一些基本概念,以及奇异摄动微分方程初 边值问题形式渐近解的构造和余项估计,这些都为引 入空间对照结构理论打下了基础;第2章主要介绍二 阶奇异摄动常微分方程的内部层问题,即阶梯状空间 对照结构,其中包括了阶梯状解的形式渐近解的构造 ,转移点的确定,并用微分不等式方法证明了解的存 在性和给出了余项估计;第3章主要介绍奇异摄动常 微分方程组的阶梯状空间对照结构,其中包括了各种 类型的奇异摄动微分方程组,从二阶奇异摄动微分方 程组着手一直到高阶奇异摄动微分方程组为止,不但 构造了渐近解,而且用缝接法证明了解的存在性;第 4章主要介绍奇异摄动抛物型方程中的转移型空间对 照结构,这里的内容更丰富,所得到的许多结