《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
本书包含七章。章从Lebesgue测度和Lebesgue积分出发介绍抽象测度和抽象积分,以及可测函数的连续性;第二章介绍LP空问及其可分性和对偶空间,以及用连续函数逼近LP空间元素;第三章介绍Hilbert空间上线性变换的表示,Hilbert空间中的规范正交系;作为例子,本章还介绍了三角级数,它是逼近论、小波分析的基础,另外,作为Riesz表示定理的应用之一,这里还介绍了广义测度的有关知识(这部分可作为选讲内容);第四章主要讨论n维欧氏空间上的Fourier变换的概念及基本性质,以及Fourier变换在偏微分方程中的应用;第五章微分学是将数学分析中函数的微分概念推广到映射和测度中去,分别介绍了映射的导数、偏导数及高阶导数和测度的导数;第六章介绍Banach空间中的五大定理;最后一章介绍了广义函数。
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容。书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和
本书内容包括:张量代数,介绍了仿射空间和仿射坐标系,研究了张量代数的性质;张量分析,讨论了曲线坐标系的张量,研究了Riemann空间的张量微积分及Riemann-Christoffel曲率张量;曲面张
《插值系数有限元法超收敛分析》针对半线性微分方程中含有的非线性项f(u),在有限元计算中将插值Inf/(uh)代替f(uh),从而得到一种简化的有限元法——插值系数有限元法,同经典的有限元求解非线性微分方程相比,插值系数有限元法是一种高效而经济的算法。《插值系数有限元法超收敛分析》用中国学派的单元正交分析法及其修正技术,系统地对多种半线性微分方程问题,研究了插值系数有限元的超收敛性,对其性质和相关结构做出比较完整的理论分析,为某些应用非线性微分方程的数值模拟和计算提供一种高精度的高效计算方法。