本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
本书汇集了“数学分析”方面的问题和反例500多个。全书共八章,内容有数列、函数微分、积分、级数、一致收敛、多元函数、重积分与参变量积分。每一章分为三部分:第一部分提纲挈领地给出了该章的基本概念和主要结
本书阐述现代科学与工程计算中各种常用算法的基础知识与编程实现方法,内容包括设计数值算法的原则、非线性方程的数值解法、线性方程组的直接法与迭代法、函数插值法与昀小二乘拟合法、数值积分法与数值微分法、常微分方程初值问题的数值解法、矩阵特征值与特征向量计算的数值方法等。每章首先阐述基础知识要点,其次给出相应算法的详细描述,然后通过例题给出实现算法的完整程序与运行结果,最后在结尾部分针对介绍的算法配备了丰富的编程计算习题。附录中给出了全部习题的参考答案。
《高等数学习题集精品系列·数学分析例选:通过范例学技巧》通过解答一些特别挑选的范例(共153个题或题组)来提供数学分析习题的某些解题技巧,还给出了20世纪60年代以来的某些研究生入学试题及多种国外资料的杂题(共200个题或题组)。《高等数学习题集精品系列·数学分析例选:通过范例学技巧》包含问题总数超过600个,其中大约450个给出解答或提示。这些例题和杂题有一定的难度。
《理论数值分析(第3版)》旨在为读者提供一个基于泛函分析并专注于数值分析的数学框架,让读者更好地学习数值分析和计算数学,及早进入科研项目。本教程包括了泛函分析、逼近理论、傅里叶分析和小波等诸多基础专题,每个专题的表述既能了解该科目,又可以达到一定的深度,特别专题的参考文献都列于每章末,供读者深入学习和研究。由于现实问题的往往是多相关的,多变量多项式在研究和应用中扮演着重要的角色,第三版中就此专题新增了一章。
本书系统地介绍了数据如何始于业务、取于业务、用于业务。既有扎实的理论铺设,又有具体的案例支撑,通俗易懂地回答了数据“怎么来”和“怎么用”的问题。同时,本书总结出了解决业务分析难题的六大步骤,包括对 终数据分析产生关键影响的数据源的选取方法,以及通过对业务模块的判断确定分析方法的适用场景, 终推演、验证、分析出结论,并选择 的分析结果展现方式,让数据分析全过程形成闭环。 本书的内容从底层原理出发,帮助读者打好数据分析基本功。在原理的讲解过程中,通过提问、思考、解答、案例分享的方式,结合三位专家十多年的行业经验,让读者从根本上理解数据分析、学会数据分析。本书适合数据分析从业也、数据分析爱好者阅读,也适合大中专院校数据相关专业的老师和学生使用。