《泛函分析》介绍泛函分析的基础知识,包括距离空间与赋范空间、有界线性算子、Hilbert空间、有界线性算子的谱和拓扑线性空间。 《泛函分析》旨在提供一本教师易于使用、学生易于阅读的本科生教材。为此,《泛函分析》在内容编排上注重理论展开的条理性和清晰性,在文字叙述上力求可读性强,定理的证明过程较为详细。《泛函分析》的第5章不是本科生必须学习的内容,仅供读者需要时参考。《泛函分析》配备较多的习题,以备选用。《泛函分析》的末尾对大部分习题给出提示或解答要点,供读者参考。
本书系统介绍了接近非线性椭圆方程解的正则理论的近期新进展。作者详细描述了将线性椭圆方程的经典Schauder和Calderón-Zygmund正则理论推广到接近非线性情形的所有技巧。 作
本书是为高等理工科院校编写的“复变函数与积分变换”的教材。内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,残数理论及其应用,保形映射,含复参数函数的积分,拉普拉斯变换和傅里叶变换。 本书内容丰富,选材适当,重点放在加强基本理论与基本方法以及它们的基本应用上,叙述严谨,并力求做到深入浅出,通俗易懂,与同类教材比较,本书中增加了“含复参数函数积分”一章,作为推导拉普拉斯变换和傅立叶变换的逆变换的理论基础,使得积分变换的理论更严谨。本书的另一重要特色是加强了解析函数唯一性定理的应用,把解析函数的唯。性定理应用到解析函数的微分理论和拉普拉斯变换的计算上,使本书的内容更具系统性,体系更科学。 本书可以作为理工科大学“复变函数与积分变换”课程的教材,也可以供工