《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
系统介绍有理逼近的基本理论和方法及其在工作中的应用.
本书是普通高等工科院校基础课规划教材之一,内容包括高等教育工科各专业所需要的复变函数和积分变换的基础知识。主要有复数与复变函数、解析函数、复变函数的积分、级数、留数、保角映射、傅里叶变换和拉普拉斯变换等。每章末附有小结和自测题,以便于读者自学时能够抓住重点和检查自己对本章学习的基本情况。书末附有习题答案和参考书目。 本书在编写过程中力求做到条理清楚、重点突出,注重解题方法的训练和思维能力的培养。本书可以作为高等教育工科各专业该课程的教材,亦可作为其他专业学习这门课程的教学参考书。本书使用学时建议为48~64学时。
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。
本书是关于不连续动力系统动力学及其流转换性理论的专著、本专著提供了研究动力系统网络动力学及其行为复杂性的数学基础。书中介绍的不连续动力系统中的障碍向量场理论将彻底改变人们在动力学系统中传统的思维方式;棱上动力学及其流转换复杂性理论是人们讨论动力学系统的低维网络通道吸引的数学基础;具有多值向量场的流对其边界、棱和顶点的跳跃流理论给小厂动力系统网络的“台球”理论的数学基础;动力系统的相互作用理论是动力系统网络中的普适性原理,并应用于动力系统同步。 本书可作为应用数学、物理、力学及控制领域的大学师生及科研人员的参考书。
完全非线性椭圆方程(影印版)
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部代理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。
首先,这部书讲清楚了泛函分析理论对数学其他领域的应用。例如,第2A卷讲述线性单调算子。他从椭圆型方程的边值问题出发,讲问题的古典解,由于具体物理背景的需要,问题须作进一步推广,而需要讨论问题的广义解。这种方法背后的分析原理是什么?其实就是完备化思想的一个应用!将古典问题所依赖的连续函数空间,完备化成为Sobolev空间,则可讨论问题的广义解。在这种讨论中间,我们可以看到Hilbert空间的作用。书中不仅有这种理论讨论,而且还讲了怎样计算问题的近似解(Ritz方法)。 其次,这部书讲清楚了分析理论在诸多领域(如物理学、化学、生物学、工程技术和经济学等等)的广泛应用。例如,第3卷讲解变分方法和优化,它从函数极值问题开始,讲到变分问题及其对于Euler微分方程和Hammerstein积分方程的应用;讲到优化理论及其对于控制问题(
《函数论与泛函分析初步(第7版)》是世界著名数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析Ⅲ》)的基础上编写的。《函数论与泛函分析初步(第7版)》是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现了作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与线性算子,测度、可测函数、积分,勒贝格不定积分、微分论,可和函数空间,三角函数傅里叶变换,线性积分方程,线性空间微分学概要以及附录的巴拿赫代数。 《函数论与泛函分析初步(第7版)》适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
Matrix functions and matrix equations are widely used in science, engineering and the social sciences, due to the succinct and insightfulway in which they allow problems to be formulated and solutions to be expressed. This book covers material relevant to advanced undergraduate and graduate courses in numerical linear algebra and scientific computing. It is also well-suited for self-study. The broad content makes it convenient as a general reference to the state-of-the-art on the subjects.
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。
泛函分析的历史表明,泛函分析是代数学和拓扑学相互结合的产物,它的演变发展受到这两大数学分支的影响。显而易见,泛函分析已经涵盖了现代分析中相当大的一部分,特别是偏微分方程理论。 本书共分为九章,*章主要讨论线性微分方程和施图姆-刘维尔问题。第二章讨论了 密码积分 方程,包括狄利克雷原理和贝尔-诺依曼方法。第三章讨论薄膜振动方程,包括庞加莱的贡献和H. A. 施瓦茨1885年的论文。第四章讨论了无穷维思想。其他几章分别为:第五章介绍至关重要的几年和希尔伯特空间的定义,包括弗雷德霍姆的发现和希尔伯特的贡献;第六章讨论对偶和赋范空间的定义,包括哈恩-巴拿赫定理和滑脊方法与贝尔纲;第七章讲述1900年后的谱理论,包括F. 里斯、希尔伯特、冯 诺依曼、外尔和卡莱曼的理论和工作;第八章讨论局部凸空间和广义函数论
本书基本上是自洽的。*部分介绍了20多年来无穷维线性系统控制理论的**发展,特别是适定、正则系统的抽象理论,也讨论了可控性、可观性、能稳性、可检性、可优性、可估性、实现,以及极点配置等几个主要的基础性概念。第二部分介绍了适定、正则系统理论在偏微分方程,主要是在几个经典的高维偏微分方程中的应用。第l章和附录中列出了列出本书所需的有穷维系统控制、泛函分析、黎曼几何的基水知识,有利于初学者入门。
This book contains 80 original research and review paperswhich are written by leading researchers and promising youngscientists, which cover a diverse range of multi- disciplinarytopics addressing theoretical, modeling and computational issuesarising under the umbrella of ""Hyperbolic Partial DifferentialEquations"". It is aimed at mathematicians, researchers in appliedsciences and graduate students.
实变函数作为学习近代分析数学的基础课程,其内容早已有了比较明确的陈述和成熟的体系。然而,从教学的角度审视,如何将其中丰富的内涵表现出来,切能比较顺畅的传递给初学者,还有许多事情可做。这次修订的工作,主要是对内容上进行一些调整。一是把一些难度过高的习题删去,增加一些 适应学生理解的习题。二是对一些过时的内容进行删减,增加一些新颖的、适合时代发展的内容。...............................................................................................
《复函数论导论》是一部介绍单复变函数解析理论本科生教程,内容体系十分严谨但又不失基础性。本书从基本定义开始,徐徐展开,除了微积分基本知识,没有做任何铺垫,深入讲解复分析的观点,可以说达到了这门学科的制高点。并且将这些主要知识点:如柯西定理,黎曼射影定理、mittag-leffler定理讲述的十分明朗。本书重在强调几何,专门有一章讨论共形射影,相当于讲述复函数理论的简明教程。每章都有大量的精选练习,从简单直接计算到很具有启发性思想的都具有。 读者对象:数学专业的本科生,研究生和相关专业的科研人员。
《复变函数论》系统介绍了复变函数的基本理论,包括复数的运算、复变函数的概念、解析函数的概念、解析函数的柯西积分理论、魏尔斯特拉斯级数理论、黎曼共形映射理论以及解析函数空间的有趣介绍等,体现了基本的复分析思想方法,适合于从事国际热门的解析函数空间上函数理论研究和算子理论研究的研究生在本科阶段的基本素养的培养。由于函数空间理论密切联系于工科电子通信类学科的信息处理与信号处理研究,故而也适合于电子通信类学科的面上公共课“复变函数”课程的教学。
复分析是数学*中心的学科之一,不但它自身引人入胜,丰富多彩,而且在多种其他数学学科(纯数学和应用数学)中都非常有用。本书的与众不同之处在于它从多变量实微积分中直接发展出复变量。当每一个新概念引进时,它总对应了实分析和微积分中相应的概念,本书配有丰富的例题和习题来说明此点。 作者有条不紊地将分析从拓扑中分离出来,从柯西定理的证明中可见一斑。本书分几章讨论专题,如对特殊函数的完整处理、素数定理和Bergman核。作者还处理了H p空间,以及共形映射边界光滑性的Painlev 定理。 本书可用作研究生一年级的复分析教材,是一本很吸引人且现代的复分析导引,它反映了作者们作为数学家和写作者的专业素质。