本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
本书第五版保留了作为“十二五”普通高等教育本科国家级规划教材的第四版全部内容及结构,只是对书中一些疏漏及不够严谨、不够清晰的表述作了修改,删去了少数多余的或不在研究范围的内容,尽可能地使这本经历了40
本书为普通高等教育“十二五”规划教材。全书共九章,主要内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换,数学软件在复变函数与积分
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙
刘培杰数学工作室所编的《 普里瓦洛夫(积分卷复变函数论)/复变函数习题集精品系列》对于积分给予了 深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。 本书适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者级教练员作为参考。
南秀全编著的《极值与 值(下卷)/南秀全初等数学系列》共分4章。介绍了如何运用冻结变量求极值,并阐述了极值与 值的相关应用。 本书适合中学师生及广大数学爱好者阅读学习。
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。