《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
本书是中山大学数学力学系常微分方程组编《常微分方程》1978年版的修订本(第二版),这次修订除了对原书进行了一些修改以及充实了各章、节的习题外,还考虑了师范院校常微分方程教学大纲的要求,增加了一章线性偏微分方程的内容。 全书主要内容有:绪论;一阶微分方程的初等解法;一阶微分方程的角的存在定理;高阶微分方程;线性微分方程组;非线性微分方程和稳定性;一阶线性偏微分方程。此外还有两个附录:拉普拉斯变换;边值问题。 本书可作综合大学和师范院校数学专业,以及师范专科学校数学科常微分方程课程的教材。 本书第二版由丁同仁副教授审阅。
本书以真解析函数为主线安排了复数与扩充复平面、复变函数与解析函数、复变函数沿有向曲线的积分、级数、奇点与留数、共形映射共6章内容,从微分、积分、级数、在一点处、在一个收敛点列、在一个区域中、共形映射等10个不同的层面来逐步深入地展开对解析函数的讨论,并利用解析函数的留数定理来计算一元实变函数的积分。
本书主要研究满足开集条件的自相似集的结构,从Hausdorff测度和上凸密度的计算与估计到其内部结构的理论研究,都作了比较全面的阐述.全书共分四章。章介绍基本定义、符号和基本命题;第2章讨论自相似集;第3章讨论上凸密度;第4章讨论自相似集的结构及相关问题.两个附录分别介绍了集合论、点集拓扑和测度论的基础知识。 本书可作为高等院校分形几何方向研究生、教师的教学用书,也可供相关方向科研人员和工程技术人员阅读参考。
《函数式编程思维》脱离特定的语言特性,关注各种OOP语言的共同实践做法,展示如何通过函数式语言解决问题。例如,如何利用函数式语言,通过高阶函数、多元方法等完成代码重用。知名软件架构师Neal Ford为我们展示不同的编程范式,帮我们完成从Java命令式编程人员,到使用Java、Clojure、Scala函数式编程人员的转变,建立对函数式语言的语法和语义的良好理解。
《复变函数简明教程》是为高等院校数学各专业“复变函数”课程编写的教材。它的先修课程是数学分析或高等数学。本书共分八章,内容包括:复平面,扩充复平面,解析函数,分式线性变换,cauchy定理,cauchy公式,幂级数,大模原理,Schwarz引理,Laurent级数,留数及其应用,调和函数,解析开拓,Riemann存在定理等。《复变函数简明教程》在选材上注重少而精,突出了复变量与实变量之间的关系、级数和积分表示方法,使之尽可能地满足数学各专业的需求,并充分地反映了复变函数的核心内容;在内容的处理上,体现了实分析与复分析的相同与不同之处,既注重定理的严格证明,又充分考虑了读者学习高等数学时的不同背景;在内容安排上,由浅入深、循序渐进、深入浅出,便于教学与自学;在叙述表达上,力求严谨精炼、清晰易读。为拓广所学知识,《复