微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
《研究生教学用书:微分流形初步》是微分流形理论的入门教材,是联系经典数学和当代数学文献的桥梁,主要内容是介绍微分流形的基本概念和例子、微分流形上的光滑切向量场、光滑张量场、外微分式的运算和性质,以及黎曼流形、李群、微分纤维丛的初步知识。全书的叙述深入浅出,平易流畅,重点突出,强调几何背景,着重介绍在微分流形上如何通过局部坐标系来处理大范围定义的数学对象。通过《研究生教学用书:微分流形初步》的学习,会在微分流形的理论和应用方面打下坚实的基础,并且为学习当代数学文献创造条件。