本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
微积分是人类历 的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。除此之外,我们 应该关注的事实是:如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5 000首歌曲装进口袋里。 在人类文明进程中的这些具有里程碑意义的发明和发现背后,微积分究竟扮演了什么样的角色?围绕曲线之谜、运动之谜和变化之谜,毕达哥拉斯、阿基米德、伽利略、开普勒、牛顿、莱布尼茨、爱因斯坦、薛定谔等如何用微积分的“钥匙”打开了宇宙奥秘之“锁”?这些谜题的解决方案对人类文明的进程和我们的日常生活又产生了什么样的深远影响?在《微积分的力量》书中,应用数学家兼“导游”斯托加茨将用一种“讲故事”和“看展览”的方
本书对微积分主要内容的知识要点和解题方法进行了归纳总结和梳理,并通过大量的例题对解法进行分析综合,让读者在这些解法中领略数学的思维方式,掌握并熟练地运用微积分的基本方法,加深对相关知识的理解,将微积分的各个知识点融会贯通。本书精心选配了一定数量的习题,同时还将浙江省历届微积分竞赛的试题收录在例题和习题中,书的 还提供了浙江省和全国竞赛的试卷和详细解答。 本书也可作为学习微积分的参考书,并希望能 好地帮助读者理解微积分的概念、理论和思想, 好地掌握微积分中的解题方法,并提高自身的数学素养和学习能力。
莱布尼兹和牛顿关于微积分优先权的争论闻名整个学术界,甚至是学术界之外。现在,学术界 ,莱布尼兹和牛顿分别独立地创立了微积分,只是牛顿先发明,莱布尼兹先发表。但这场争论在牛顿、莱布尼兹所生活的时代,甚至在他们去世后的很多年都很激烈,中间也发生了很多趣事。本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先权争论期间为自己做出的申辩,从中可以了解他创建微积分的过程以及这场争论发生的部分缘由和过程。另外,中译版本中还增加了大量插图,具有很强的可读性。
章 引言 1.1 实数连续统 1.2 函数的概念 1.3 初等函数 1.4 序列 1.5 数学归纳法 1.6 序列的极限 1.7 再论极限概念 1.8 单连续变量的函数的极限概念 补篇 S1 极限和数的概念 S2 关于连续函数的定理 S3 极坐标 S4 关于复数的注记 问题 第二章 积分学和微分学的基本概念 2.1 积分 2.2 积分的初等实例 2.3 积分的基本法则 2.4 作为上限之函数的积分-不定积分 2.5 用积分定义对数 2.6 指数函数和幂函数 2.7 X的任意次幂的积分 2.8 导数 2.9 积分、原函数的微积分基本定理 补篇 问题 第三章 微分法和积分法 部分 初等函数的微分和积分 3.1 *简单的微分法则及其应用 3.2 反函数的导数 3.3 指数函数的某些应用 3.5 双曲函数 3.6 值和*小值问题 3.7 函数的量阶
本书寻找最少且自封(不依赖于未证明的结果)的微积分,即最少的概念:微分和积分(实是一个概念,后者乃前者之和);最少的定理:基本定理和泰勒定理(实是一个定理,后者乃前者的连用);最简的解释(实是两张图)、最短的证明(实是两行算术,没有更多)、最少的数学符号(阿基米德的传统,多用文字和图形).这些概念、定理和证明只用到两张图、两行算术,不用实数,适合于文科;对理科还要加上最少的(即一个)微分方程,这时才用到实数.
本书介绍偏微分方程中典型方程的物理背景、主要解法及有关适定性的基本结论。初步介绍能量积分、积分变换、先验估计、变分法与广义解等重要概念.全书的论证及计算完整,难易层次分明,力求简明易读.本书可用于普通高等学校教材,也可用作自学读本。读者具有数学分析、常微分方程知识就可学习本书.略去选讲的材料,57课时可以基本讲完全书.
The launch of this Advanced Lectures in Mathematics series is aimed at keg mathematicians informed of the latest developments in mathematics, as well as to aid in the learning of new mathematical topics by students all over the world. Each volume consists of either an expository monograph or a collection of significant introductions to important topics. This series emphasizes the history and sources of motivation for the topics under discussion, and also gives an overview of the current status of research in each particular field. These volumes are the first source to which people will turn in order to learn new subjects and to discover the latest results of many cutting-edge fields in mathematics.