本书在 Sobolev 空间框架下, 介绍了积分泛函极小问题的现代偏微分方程的理论, 内容包括 Sobolev 函数空间及各种性质;经典变分方法:一阶变分、二阶变分、极小点存在的充分和必要条件、条件极值的 Lagrange 乘子法等;变分法的直接方法:下半连续性、补偿紧性、集中紧性、 Ekeland变分、Nehari 技巧等;三维欧氏空间极小曲面的 Douglas 方法和等周不等式的证明.
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
微分动力系统的研究始于上世纪60年代初,它主要研究随时间演变的动力系统的整体性质及其在扰动中的变化,其前身为常微分方程定性理论和动力系统理论,随着对非线性力学问题研究的深入和系统科学各分支的形成,微分动力系统越来越成为有关学者关注的新兴学科领域。本书是作者根据多年科研与教学的积累编写而成,内容包括:动力系统简介,双曲不动点,Smale马蹄、Anosov环面同构和螺线圈吸引子,双曲集,公理A系统与Omega稳定性定理。本书行文简洁、观点极具特色,书中将双曲不动点理论和双曲集理论从数学实质上完全统一起来,从而达到揭示表面差异之下的实质上的一致,是一本有很高学术价值的著作。本书可供研究微分动力系统方向的研究人员,以及应用数学及相关专业的教师和学生使用参考。
本书对微积分主要内容的知识要点和解题方法进行了归纳总结和梳理,并通过大量的例题对解法进行分析综合,让读者在这些解法中领略数学的思维方式,掌握并熟练地运用微积分的基本方法,加深对相关知识的理解,将微积分的各个知识点融会贯通。本书精心选配了一定数量的习题,同时还将浙江省历届微积分竞赛的试题收录在例题和习题中,书的 还提供了浙江省和全国竞赛的试卷和详细解答。 本书也可作为学习微积分的参考书,并希望能 好地帮助读者理解微积分的概念、理论和思想, 好地掌握微积分中的解题方法,并提高自身的数学素养和学习能力。
本书围绕Lebesgue测度与积分及其相关内容,总结和归纳了一些常用的解决问题的方法,并通过若干典型例题加以说明。每一章后都配备了一定数量的习题,而且每题都有较为详细的解答,并尽量做到通俗易懂。 本书注重方法的讲解,因而对于初学者可以起到事半功倍的效果,对于备考研究生会有很大的帮助,也可以作为“实变函数”任课教师的参考书。
《微积分》这本由著名数学家王元和方源合作的 微积分教材,倾注了两位作者多年在微积 分教学中的独有心得和体会。本书写法经典,但是富 含特色每一个概念的引入, 都是通过众多的例子、完整的细节加以闸述;在某些 知识结构处理上独具创新, 非常巧妙;精心安排的习题可以帮助读者更好地落实 所学的知识。 本书由Springer出版社于1996年先行出版了英文 版,获得了巨大的成功,并 赢得了广泛的好评。 本书无论是用于课堂教学还足自学,都是数学、 物理和工程等理工科学生学习 微积分的一个良好的选择。
为了帮助应用数学,计算数学,运筹控制等专业的教师、研究生和高年级大学生以及其他非数学专业的教学与研究人员和他们的研究生熟练地运用偏微分方程方法去解决科学技术和实际问题,本书把注意力集中在把一些常用方法(Green函数法、分离变量法、变分方法、特征线法以及量纲分析方法等)讲得尽可能透彻一些,把一些常见的物理和力学模型(非线性波、流体、气体和固体的运动模型等)推导得尽可能简明一些,把一些近代数学概念(Hilbert空间,Sobolev空间,广义函数,间断解等)阐述得尽可能浅近一些.要求读者只要具有数学分析,线性代数,常微分方程和初等数学物理方程等基础知识,就可顺利阅读此书,并有所裨益。 本书可以作为上述各数学专业和相关的物理、力学专业的研究生教学用书,以及大学数学物理方程课程的教学参考书.并希望能成为在实际工
本书主要是面向青少年和本科经济类学生的自学教程。也可以作为面向大众的科普读物。本书中的趣味阐述使得微积分简单易学,并且涉及重要极限、中值定理、微分方程等微积分中核心概念。贴近我国读者的现实生活和考试文化。
《沉积岩岩石学》教材全面而系统地介绍了沉积岩岩石学的基础知识、基本原理及其沉积岩鉴定与研究的基本技能和方法,并尽可能反映了近年来沉积岩岩石学和沉积学的新进展。 《沉积岩岩石学》可作为地质学、矿产普查与勘探、石油工程和地球化学等专业的本科教学用书,也可供相关专业研究生、广大教学和科技人员参考。
本书介绍椭圆方程的基本性质和方法。作者用自己独特的方法把 De Giorgi-Nash-Moser 迭代、Morrey 估计、逆 Holder 不等式和椭圆组的能量的 blow up 分析系统有机地结合起来, 并且特别强调正则性方法的研究。 内容全面、自封 证明简洁、篇幅适中 在处理正则性理论方面非常具有特色
本书寻找最少且自封(不依赖于未证明的结果)的微积分,即最少的概念:微分和积分(实是一个概念,后者乃前者之和);最少的定理:基本定理和泰勒定理(实是一个定理,后者乃前者的连用);最简的解释(实是两张图)、最短的证明(实是两行算术,没有更多)、最少的数学符号(阿基米德的传统,多用文字和图形).这些概念、定理和证明只用到两张图、两行算术,不用实数,适合于文科;对理科还要加上最少的(即一个)微分方程,这时才用到实数. 简言之,最少的微积分=两个(或一个)概念 两个(或一个)定理十一个方程.归根结底,就是两张图、两行算术,加上一点实数,没有更多。
《积分导论(第2版)(英文版)》由(美)钟开莱著,是一部可读性很强的讲述积分和微分方程的入门教程。将基本理论和应用巧妙结合,非常适合学习过概率论知识的研究生,学习积分。运用现代方法,积分的定义是为了可料被积函数和局部鞅,紧接着是连续鞅的变分公式ITO变化。书中包括在布朗运动的描述、鞅的Hermite多项式、Feynman—Kac泛函和Schrodinger方程。这是第二版,讨论了Cameron—Martin—Giranov变换,并且在最后一章引入微分方程和一些学生用的练习。