本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
本书是俄罗斯科学院院士О.А.奥列尼克多年来在莫斯科大学数学力学系为大学三年级学生讲授该课程基础上的扩充。内容包括偏微分方程理论的古典与现代理论的基础部分,以及泛函分析、广义函数理论、函数空间理论方面的一些知识。作者是И.Г.彼得罗夫斯基的学生,在偏微分方程这个方向享有盛名。此书反映了莫斯科大学在这个课程上,20世纪后半叶至今的新情况,可供我国偏微分方程课教学参考。 本书可供综合大学和师范院校数学、物理、力学及相关专业的教师和学生参考,也可供工科院校应用数学系师生参考。
“无穷小分析”这一名称是由欧拉创始的,这正是数学中“分析”一支名称的起源。本书作者所在的布尔巴基学派对20世纪的法国数学教学改革作出了重要的贡献,但也出现了一些消极影响,例如倡导独立子传统数学的所谓“新数学”;也有过只重视理论。而忽略计算的倾向。本书是作者为纠正这些偏向而设置的课程编写的。在本书所讲的无穷小计算中。使用不等式要比使用等式多得多,而且可用三个词作为本书的提要:求上昇、求下界、逼近。作者希望读者通过学习本书。不是只学会一些无穷小分析中运算的机械程序,而是还懂得有关“直观”的概念。 本书包含函数与映射的逼近及渐近展开式、复查解析函数的基础、一阶与二阶线性微分方程的近似解法与稳定性以及贝寡尔函数等。书中有不少新意。并附有相当数量的优秀习题。 本书可供大学数学专业
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种 有趣、 易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的“小书”。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书是“北京大学数学教学系列丛书”之一,是数学各专业本科生“常微分方程”课程的教材,它系统介绍了常微分方程的基本理论和基本方法,内容包括:微分方程的基本概念、初等积分法、微分方程解的存在和唯 一性、解对初值和参数的依赖性、线性微分方程组、幂级数解法、边值问题、一阶偏微分方程、微分方程定性理论简介。本书作者在北京大学数学学院讲授“常微分方程”课程二十余年,具有丰富的教学经验和积累,在微分方程的教学和科研方面有一定的建树。本书注重知识的来龙去脉,注意理论与实际相结合,强调方法与应用,是部 的“常微分方程”教材。
《非线性物理科学:微分方程群性质理论讲义》提供了确定和利用微分方程对称性的李群方法简明和清晰的介绍,并提供了在气体动力学和其他非线性模型中的大量应用,以及《非线性物理科学:微分方程群性质理论讲义》作者在这个经典领域的卓越贡献。《非线性物理科学:微分方程群性质理论讲义》中还包含在其他现代书籍中不曾涉及的一些非常有刚的材料,例如:Ovsyannikow教授发展的部分不变解理论,该理论提供了求解非线性微分方程和研究复杂数学模型强有力的工具。
本书按照一般的微积分学教材的编排方式,系统地论述了基于MATLAB 语言编程的方法来实现微积分问题的求解。全书内容包括函数与序列的描述及图形绘制、极限问题的求解、导数与微分问题的求解、积分问题的求解、函数的逼近与级数求和、数值导数与数值积分等。此外,书中还概括性地介绍了积分变换、分数阶微积分等内容。 本书可以作为高等学校理工科各类专业的本科生与研究生学习计算机数学语言(MATLAB)的教材,也可以作为一般读者学习微积分学的辅助教材,帮助读者从另一个角度认识微积分学问题的求解方法,并可以作为查询微积分数学问题求解方法的工具书。
本书根据*高等学校数学与统计学教学指导委员会制定的**“经济管理类本科数学基础课程教学基本要求”,并结合作者长期在教学一线积累的丰富教学经验编写而成。全书共9章,内容包括函数、极限、连续,导数与微分,中值定理与导数的应用,不定积分,定积分,定积分的应用,多元函数微积分学,无穷级数,微分方程与差分方程。
《微积分学导论》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今理工科数学教育的发展,并满足培养学生的要求。分上、下两册出版,内容包含微积分学的核心内容及其应用。 本书是下册,内容包括多变量函数的微分学、多变量函数的积分学、无穷级数、含参变量积分、傅里叶分析等五章。本书的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象和直观。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,并有详细的解答,可给
《微积分学导论》是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今理工科数学教育的发展,并满足培养学生的要求。分上、下两册出版,内容包含微积分学的核心内容及其应用。 本书是下册,内容包括多变量函数的微分学、多变量函数的积分学、无穷级数、含参变量积分、傅里叶分析等五章。本书的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象和直观。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,并有详细的解答,可给学
本为数学、工程和理科等专业设计,包括一元微积分和多元微积分两部分。全书包括十五章和三个附录,用简单、扼要而且生动的语言向读者阐明了微积分学中的基本思想,详细介绍了微积分学中的基本概念和知识以及分析解决问题的方法。 本书每一节都配有大量富有创意的、涉猎广泛的高质量习题。为进一步帮助读者学习,本书的电子书(ebook)中有许多交互式图像,这些图像可以用来揭示许多难于表达的概念。此外,在与本书配套的《教师资源指南》(Itructor's Resource Guide)和《试题库》(Test Bank)中配有大量的测验题、测试项目、课程支持以及指导课题等。 《微积分》既可以作为高等院校微积分课程的双语教材和教师参考书,也可以作为国际高中AP课程或国际培训所需要的微积分教材。
本套书由《微积分Ⅰ》、《微积分Ⅱ》两《微积分II》组成。《微积分Ⅰ》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何。在附录中简介了行列式和矩阵的部分内容。《微积分Ⅱ》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级数、傅里叶级数、广义积分的敛散性的判别法、常微分方程初步等。本套书继承了微积分的传统特色,内容安排紧凑合理,例题精练,习题量适难易恰当。 本套书可供综合性大学、理工科大学、师范院校作为教材,也可供相关专业的工程技术人员参考阅读。
The first volume of the Chinese edition of this book waspublished in July 1997, and the second volume was published in June2000. In July 2000, upon the readers' request, we corrected severaltypographical errors and republished the first volume. In this edition, minor typographical errors are corrected, and asmall paragraph has been added to section 5.5.4 in Chapter 5, whilethe remaining text is unchanged. We would like to take this opportunity to express our sincerethanks to our teachers,friends, and readers for their encouragementand support.
本书是在中国科学技术大学高等数学教研室编写的《高等数学导论》基础之上,由参与微积分教学多年的教师分工编写而成的,内容结构方面得以重新组织和优化,而且部分过于烦琐的内容也得到了删除或简化,以适应当今工科数学教育的发展,并满足培养学生的要求。本书分上、下两册出版,内容包含微积分学的核心内容及其应用。 本书是上册,内容包括实数与函数、极限理论、单变量函数的微分学、单变量函数的积分学、微分方程等五章。本书的编写充分考虑了学生的背景和认知水平,尽量由具体问题引入数学概念,同时采用语言描述、公式表达、数值列表以及图形说明等多种方式,以使抽象深奥的数学概念、思想和方法变得具体、生动、形象和直观。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,并有详细的解答,可给学生提供一个解