本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分) 中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似 ,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
微分几何讲义(修订版)
这是当今关于偏微分方程 (PDE) 的*权威教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。本书内容广泛,阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 新增非线性波动方程的一章, 超过 80 个新习题, 许多新的小节 大大扩充了参考文献。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
编辑手记 苏联数学进展系列 由不同数学领域的一名或多名资深专家作为主编,内容包含来自俄罗斯的世界*数学家的论文.此系列书籍在21卷之后作为 美国数学协会译从2 的子系列出版,后更名为 苏联数学进展系列 . 本书为此系列的第10卷《偏徼分方程全局吸引子的特性》. 演化方程的全局吸引子是一组描述动态系统在非常大的时间值内的行为轨迹.值得注意的是,偏微分方程组的吸引子点是某个函数空间的一个元素;这一点是空间变量的函数,也取决于方程中出现的参数对于带有耗散的物理系统的任何有限制的系统(ast ),被描述为:与存在于吸引子中的轨迹相对应的演化方程.从物理的角度来看,这种制度往往很有意义.例如,根据 Landau和 Ruelle-Takens的猜想,正是 Navier-Stokes系统的非平凡动力学确定了湍流的存在.因此,获得关于吸引子的尽可能完整的信息无论是从
本书列入和Springer合作出版的《非线性物理科学》系列。 一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 本书的第Ⅰ卷介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而又清晰的分析与介绍。 第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。 本书适合于对概率和统计、数学建模和数值模拟方面感兴趣的学生、工程师、物理学家以及其
本书为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出“严密”与“直观”的结合,重视数学中的“和谐”与“美感”,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
本书是大学数学系列创新教材之一,内容主要包括:空间解析几何,空间理论初步与矢量值函数微积分, 多元函数微分学,重积分,曲线积分与曲面积分,无穷级数.本书风格独特、特点鲜明、内容丰富、例题典型.本书主要是基于 大学强基计划实验班、新工科专业一年级工科学生实验班或提高班,加强厚实的数学基础,加强数学思想方法和应用数学能力,强化逻辑思维能力的培养而编写的. 本书可作为研究型大学理工科学生一年级 学期的数学课程教材或者教学参考书,同时也可作为研究生入学考试中高等数学科目的复习资料.
本书系统介绍现代偏微分方程的基本理论和方法. 偏微分方程是数学学科的一个重要分支, 主要来源于物理学、化学、力学、几何学及泛函分析理论的研究, 它与其他数学分支均有广泛的联系, 而且在自然科学与工程技术中有广泛的应用. 本书内容主要包括广义函数理论, Sobolev 空间的基本性质和技巧, 二阶线性椭圆型方程、双曲型方程、抛物型方程与半群理论. 本书的特点是循序渐进, 强调基础理论的同时, 注意具体应用. 书中内容深入浅出, 文字通俗易懂, 并配有适量难易兼顾的习题.
《微积分入门(修订版)》为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出“严密”与“直观”的结合,重视数学中的“和谐”与“美感”,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第1卷):数学基础及其理论》介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而又清晰的分析与介绍。
The first edition was intended to be a synthesis of reform and traditional approaches to calculus instruction。In this second edition I continue to follow that path by empha- sizing conceptual understanding through visual, numerical, and algebraic approaches。The principal way in which this book differs from my more traditional calculus textbooks is that it is more streamlined。 For instance, there is no complete chapter on techniques of integration;I don't prove as many theorems (see the discussion on rigor on page xi);and the material on transcendental functions and on parametric equations is interwoven throughout the book instead of being treated in separate chapters。Instruc- tors who prefer fuller coverage of traditional calculus topics should look at my books Calculus, Fourth Edition and Calculus: Early Transcendentals, Fourth Edition。 Changes in the Second Edition~ The data in examples and exercises have been updated to be more timely。~ Several new examples have been added。For insta
The subject of this book is geometric integrators for differential equations with highly oscillatory solutions, including oscillation-preserving integrators, continuous-stage ERKN integrators, nonlinear stability and convergence analysis of ERKN integrators, functionally-fitted energy-preserving integrators, exponential collocation methods, volume-preserving exponential integrators, global error bounds of one-stage ERKN integrators for semilinear wave equations, linearly-fitted conservative/dissipative integrators, energy-preserving schemes for Klein–Gordon equations, Hermite–Birkhoff time integrators for Klein–Gordon equations, symplectic approximations for Klein–Gordon equations, continuous-stage modified leap-frog scheme for high-dimensional Hamiltonian wave equations, semi-analytical exponential RKN integrators,long-time momentum and actions behaviour of energy-preserving methods.The new geometric integrators are applied to problems with highly oscillatory solutions from sciences and engineering.
本书是美国 数学家Peter Lax与康奈尔大学数学教授Maria Terrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积分,以及作为一元函数微积分基本定理的多元推广——格林定理、散度定理、斯托克斯定理.此外,作者在散度定理、斯托克斯定理这一章还补充了对守恒律的介绍,并专辟一章介绍了数学物理中典型的几类偏微分方程.跟Lax的其他教材风格一致,作者在本书中一如既往地贯彻了牛顿的主张“达到理解的 方式是通过少量好的例子”.Lax对数学之应用造诣非凡,他成功地将来自物理的诸多例子融入这两本微积分教材,将数学与物理融会贯通.本书末尾提供了部分习题的答案.
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第Ⅱ卷应用英文版)(精)》由Vladimir V.Uchaikin著,本书的第Ⅰ卷介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而义清晰的分析与介绍。第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。 本书适合于对概率和统计、数学建模和数值模拟方面感兴趣