《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书分上下两篇,上篇通俗地阐述了作者所开创的几何解题的“消点 法”,用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假 ,命题成立时还能够产生人容易检验和理解的证明,即可读证明,书中先 引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理 ,接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方 法,此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法 以及复数法的基础上也能建立消点法,下篇则对几何公理体系提出了新的 见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出 一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公 理体系的等价性。 本书可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林 匹克工作者和参赛
商品参数 几何原本 定价 58.00 出版社 重庆出版社 版次 3 出版时间 2014年08月 开本 16开 作者 欧几里得 装帧 平装 页数 631 字数 700000 ISBN编码 9787229071578 内容介绍 《几何原本》共有十三卷,其中第壹卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;zui后讲述立体几何的内容。从这些内容可以
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问
Credlts for Figures and Color Plates Much has changed in the world of fractals, computer graphics and modem mathematics since the first edition of Fractals Everywhere appeared. The company Iterated Systems, Inc., founded by Michael Barnsley and Alan Sloan, is now competing in the image compression field with both hardware and software products that use fractal geometry to compress images. Indeed, there is now a plethora of texts on subjects like fractals and chaos, and these terms are rapidly becoming "household words.
原著被列于“莱顿汉学”(SINICALEIDENSIA)丛书之一。在科学翻译史上,汉译《几何原本》(1607年)是一项杰出的成就。利玛窦与徐光启筚路蓝缕,以古文风韵、迻译拉丁原典,风格传神,令人心悦诚服,梁启超曾赞其为“字字金珠美玉”。《几何原本》的翻译也是历史上欧洲与中国文化冲撞的一个侧面,故其价值不于数学史或科学史,在近代中西文化交流史上亦具重要价值。安国风博士的《欧几里得在中国:汉译〈几何原本〉的源流与影响》,着力把握晚明社会学术思潮变化的大背景,突出《几何原本》作为“异质”文化(如抽象性、演绎性和公理化)的特点,详细探讨了欧氏几何向中国传播的前因后果;同时,通过古典文献的梳理引证、相关人物、著作的评述与分析,揭示了明清之际中国传统数学思想的嬗变历程。
《不完备性:哥德尔的证明和悖论》是对哥德尔的生活、工作及其世界的重要新礼赞。20世纪早期见证了经典物理和数学的基础假设遭受的几次打击。相对论颠覆了约定俗成的时空观念,量子世界的研究挑战因果效应的基本观念。最为惊人的是,对于科学的基础数学,不完备性定理揭示了将数学理性化的尝试中都藏有不可弥合的裂痕,这个结果简直是悖论式的。藏在这个发现背后的天才就是哥德尔,他自身就是一个悖论式的人物。他是自亚里士多德以来最伟大的逻辑学家,同时还是爱因斯坦晚年最亲密的思想伙伴。但他行事又极为古怪,惯于偏执狂推理,并最终因此悲剧性地死去。他深受失去理性的困扰,仍然对理性深具信心。通过天才的证明。他得以揭示在任何足够复杂的中简单地说,任何数学家想要使用的都存在不能被证明的真命题。一些思想家对此感、到绝
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、学生,初、数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座及、省级骨干教师培训班参考使用。
变分法是研究泛函极值问题的一门科学,是古典数学的一个分支。 《变分法及其应用:物理、力学、工程中的经典建模》共分六章。章介绍泛函分析的一些基本概念和符号;第二章、第三章提出四个古典的变分模型,讨论泛函取得极值的必要条件、各种形式的欧拉方程、条件变分、一阶变分的一般形式、自然边界条件、变动边界与横截条件;第四章介绍物理学、力学中的变分原理,二次泛函极小与特征值的关系,正定算子的极小泛函;第五章介绍变分学中的直接方法;第六章介绍极值的充分条件。 《变分法及其应用:物理、力学、工程中的经典建模》可作为应用数学、应用物理及应用力学等本科生、研究生的教材,也可作为科技工作者的参考书。