许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学史上的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和"超立体"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种"普遍"的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
代数拓扑 同伦理论描述了同伦理论。它得以兴旺发展,应归功于W. Hurewicz1935年引进同伦群以及S. Eilenberg用同伦群引进关于映射扩张的障碍类。同伦理论包括同伦群 n(X),相对同伦群、上同伦群、谱序列以及障碍理论。我们还详细讨论了第1同伦群(也称为基本群) 1(X),它在同伦群中性质知道*多,与它有关的研究成果也*多。我们将展示近代微分几何中曲率与基本群相关的一些成果。同调群与同伦群都是拓扑不变量,也都是同伦不变量。他们是比点集拓扑中得拓扑不变量(如连通性、紧致性)更难、更复杂、更高档次的不变量。我们将给出用连通性、紧致性不能判断不同胚、不同伦,而用同调群或者同伦群却能判断不同胚、不同伦的种种具体实例。*后,还给出了球面 Sn的弱冠同伦群的结果。
《现代几何学 方法与应用》是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
点集拓扑、微分拓扑和代数拓扑是拓补学中三个重要的分支。代数拓扑是代数与拓扑的结合,是代数在拓扑中的应用,也是拓扑在代数中的应用。代数拓扑的特征是借助于代数的对象与方法,如群、环、同态、同构等进行研究拓扑空间在连续形变下得不变性质。代数拓扑与微分几何、微分方程、代数、泛函分析、大范围分析密切联系并有广泛应用。代数拓扑同调理论,包括复形的单纯同调群Hn(X),上同调群Hn(X),Euler示性数、上同调环,同调序列,切除定理。同调群的拓扑不变性与伦型不变性,万有系数定理和闭流形的Poincare对偶定理。在此基础上,进而引进拓扑空间的奇异链复形、奇异同调群及相应于复形的许多相关定理,并证明了多面体的单纯同调群与奇异同调群的同构性。*后,还给出了同调群论的若干应用。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书着眼于有向图, 将无向图作为特例,在一定的深度和广度上系统地阐述了图论的基本概念、理论和方法以及基本应用。全书内容共分7章,包括Euler回与Hamilton圈、树与图空间、平面图、网络流与连通度、匹配与独立集、染色理论、图与群,以及图在矩阵论、组合数学、组合优化、运筹学、线性规划、电子学以及通信和计算机科学等领域的应用。每章分为理论和应用两部分,并配有大量图形, 章末有小结和进一步阅读的建议。各章内容之间联系紧密,对许多 的定理给出了 简单的多种证明。每节末都有大量习题,书末附有参考文献、记号和名词索引。 本书既可用作高校数学、应用数学、运筹学、计算机科学、信息科学、管理科学等专业和相关研究所研究生和高年级本科生的选修课教材,也可用作高校和研究所图论及相关专业的教师和研究人员的参考书。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
商品参数 几何原本 定价 58.00 出版社 重庆出版社 版次 3 出版时间 2014年08月 开本 16开 作者 欧几里得 装帧 平装 页数 631 字数 700000 ISBN编码 9787229071578 内容介绍 《几何原本》共有十三卷,其中第壹卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;zui后讲述立体几何的内容。从这些内容可以
《几何原本》是世界上 、 完整且流传 广的数学著作,也是欧几里得 有价值的传世著作。欧几里得在《几何原本》中系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。而《几何原本》也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
如果用《双城记》中的开场白来形容整个冷战年代,笔者认为是再贴切不过了,那是美好的时代,那是糟糕的时代;那是智慧的年代,那是愚昧的年代;那是信仰的时期,那是怀疑的时期;那是光明的季节,那是黑暗的季节;那是希望的春天,那是失望的冬天;我们面前什么都有,我们面前什么都没有……在这样一个年代里,总有一些事情值得回味的……那时的天空中,曾经飞过一些怎样的“怪鹰呢?”
《平面解析几何方法与研究》一书全面地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的。本书对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助。对于书中的难点和一般解析几何书中不常见到的内容作者都了严谨而详细地论述,并配备了较多例题。每个例题都具有典型意义,是对正文的重要补充;这些例题对理解重要概念、掌握解析几何方法有重要作用。因此,《平面解析几何方法与研究》是一本有价值的数学教学参考书。本书可作为高中或师范院校学生的课外学习用书,也可供中学或师范院校青年教师参考之用。教师可以从中得到许多与解析几何教材密切联系的重要知识,有助于教学教学工作。