本书的内容是初等的,以平面几何中的不等式为主,全书共分为8章,前面用的是几何方法,后面则要用到一些代数、三角的知识, 一章是立体几何中的不等式,各章之间虽有联系,但是并没有的依赖关系,因此读者可以根据自己的需要,选读某几章或某些例题。 本书有习题100多个,分散在各章,有的习题是该章内容的补充,有的是定理或例题的应用,也有若干难度稍大、可供讨论的问题,习题均有扼要的解答或提示。
《几何画板课件制作教程(第三版)》主要以范例的形式全面介绍新版几何画板软件的新功能、 新特点,并结合数学课件特点系统地介绍课件设计开发的方法和技巧。 结合开发过程挖掘几何画板的潜在功能及技巧,创意出许多新的知识内容表现方式和方法,将一个二维工具推广到三维空间的应用,极大地丰富了几何画板的创作空间。另外随书光盘中收录了大量的课件素材,《几何画板课件制作教程(第三版)》各章配有许多实例,并附有习题,供读者参考。
认识生态修复对于全人类的命运和发展至关重要。21世纪是中国生态修复的世纪。那么,什么是生态修复?遭到破坏的大气、森林、土壤、河流,尤其是作为“绿色智慧新城”的雄安新区将如何进行生态修复?大熊猫栖息地的森林竟然是生态修复的结果。中国生态修复取得过哪些成绩又存在哪些问题,与世界各国有怎样的合作?这些问题,《认识生态修复/科学家在做什么丛书》将为您一一解答!
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
《微分几何讲义/新世纪高等学校规划教材·数学系列》为高等学校微分几何教材,可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事物理和数学等相关学科研究人员参考。如果从双语教学角度来考虑,它无疑也是理想的候选者。
分形几何的概念是由B.Mandelbrot于1975年首先提出的,十几年来,它已经迅速发展成为一门新兴的数学分支。这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学。并且实际上正起着把现代科学各个领域连结起来的作用。人们把它与耗散结构及混沌理论共称为20世纪70年代中期科学上的重要发现。 《分形几何:数学基础及其应用》是一本1990年才在英国初版的介绍分形理论与应用的专著,部分叙述分形几何的基本理论,主要是分维的定义与计算技巧。第二部分,广泛地介绍了分形理论在数学与物理上的各方面的应用。 《分形几何:数学基础及其应用》集分形理论与应用于一体,处理方法简单明了,有很强的可读性。译著中保留了原书的百幅左右的精美分形图像,是一本很好的研究生教材,
本书是在王敬庚、傅若男编著的《空间解析几何》的基础上修订而成的。与前一个版本比较,主要改写了第四章关于一般二次曲线(面)的内容,并且把原来的附录改写扩充成第五章平面仿射变换和等距变换。 空间解析几何是数学系一年级学生的一门基础课,它为学生学习后继的数学和物理课程提供必要的基础知识。同时,它本身的内容对解决某些实际问题也很有用。 本书包括解析几何产生的一个简单历史概述以及五章,书末附有部分习题的答案。 让学生知道一点有关一门课程的创立历史,有助于学生掌握该课程的基本思想和它在整个数学中所处的地位。为此本书将解析几何产生的历史概述放在最前面供学生阅读。 第一章是向量代数。在本章中暂不引进坐标系,目的是为了让学生更好地掌握向量本身的运算。强调向量的各种运算的几何意义和在几何
《离散数学》是创新方法工作专项项目“科学思维、科学方法在高等学校教学创新中的应用与实践KM教学法的研究与实践”的主要研究成果之一。本书共分4篇:篇为数理逻辑,包括命题逻辑和谓词逻辑;第2篇为集合论,包括集合、二元关系、函数、集合的基数;第3篇为代数结构,包括代数、群论初步、格与布尔代数;第4篇为图论,包括图的基本概念、图的连通性、图的矩阵表示和特殊图等。本书每章均有本章小结、相关知识点的思维形式注记图和扩展阅读,每篇均有本篇知识逻辑结构图,力图在内容、体例等方面形的模式。 本书可作为高等学校计算机及相关离散数学课程教材,也可供相关的教学科研人员与工程技术人员参考。
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
本书系统地介绍了一般拓扑学的基础知识。全书共分8章,内容包括:预备知识、拓扑空间,Moore-Smith收敛,子空间、乘积空间和商空间,度量空间和度量化,紧空间,一致空间,函数空间。每章后还附有适量的习题,以供读者学习后加深理解。本书的特点在于叙述深入浅出,证明过程严谨,详尽易懂,并辅以丰富的例题,使得深奥难懂的拓扑学变得轻松易学。本书适合作大学数学专业本科高年级或硕士研究生低年级的拓扑学入门教材,也可供高等学校相关专业师生参考。
本书是一本黎曼几何的入门教材,内容包括:微分流形引论、张量分析、黎曼几何基础、测地线理论及子流形几何。本书对研究黎曼几何的三种表示法——不变形式法、活动标架法和自然坐标法——作了统一的处理,介绍了微分流形与黎曼几何中的各种基本概念和技巧,兼顾到经典理论和近代进展的内容,以使读者在学完本教程后能独立从事研究工作。修订版还增加了6个附录,以适应读者进一步的要求。 本书可作为综合性大学、师范院校数学系各专业高年级选修课教材及研究生教材,也可供数学和物理学工作者参考。
知识经济社会的到来,既为数学的发展带来无限生机,另一方面,高等数学教育必须培养能处理知识经济社会提出的大量现实的或潜在的数学问题的人才,这对高等数学教育提出挑战,要求数学在教学内容、课程体系有新的突破,教学方式和方法、教学环节和手段要反映时代的水平。同时要注意处理好知识传授与素质培养之间的关系,处理好数学知识的继承与现代化的关系,萧树铁教授深入研究了现阶段高等数学教育教学状况,探讨了高等数学教学改革的必要性,阐述了高等数学教学改革中诸多因素之间的关系,提出了高等数学教学改革在认识层面上的几个要点,强调要重点解决课程体系和内容的更新问题,指出高等教育不仅应当进行以培养专门知识、技能、能力为目的的口径较宽的“专业教育”,而且应当进行以提高人的基本综合素质为目的的“通识教育”,即
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(下卷)(提高篇)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(下卷)(提高篇)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
为宣传农业资源环境保护和农村能源生态建设一年来取得的工作成效,总结交流各地的典型做法经验,农业农村部农业生态与资源保护总站组织编写了《2021农业资源环境保护与农村能源发展报告》。本报告系统回顾了2020年农业资源环境保护和农村能源生态建设领域取得的主要成就,梳理汇总了相关领域的重要政策文件和重大部署,整理分析了有关统计数据资料。