《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
徐森林、金亚东、胡自胜、薛春华编著的这本《微分几何学习指导》是中国科学技术大学出版社出版的《微分几何》的配套书,它可帮助读者熟练地掌握微分几何的内容和方法。《微分几何学习指导》对《微分几何》一书的全部习题做了详细的解答,并增加了一些有趣的习题以及联系古典微分几何与近代微分几何的典型题目。 《微分几何学习指导》可用作综合性大学、理工科大学、师范大学数学系高年级学生、教师和研究人员的参考书。
本书共八章,主要包含圆锥曲线的由来、定义、方程、性质、切线和法线、作图、通论以及举例应用等内容,深入浅出,通俗易懂。 本书适用于中学生和数学教师参考使用,也可供数学爱好者作为科学普及读物阅读。
本书系统地介绍了2维完备非紧致黎曼流形上全曲率的几何,其中包括黎曼几何预备知识、 Cohn-Vossen定理、 Huber定理、理想边界、割迹的结构、等周不等式、、射线的质量、割迹的极点、测地线的性态等内容。书中介绍并推广了许多经典的几何结果。通过研究射线的Busemann函数,讨论了完备开曲面的紧化问题。作者在每一章中都提出了一些值得考虑的尚未解决的问题,并且加入了许多插图以加深读者对内容的直观理解。本书假定读者已经掌握了微分几何的基础知识,可供大学数学系高年级本科生、研究生以及对现代微分几何感兴趣的数学工作者参考使用。
《几何原本(建立空间秩序 久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并 次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年 个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
小说家兼数学家、历史学家和哲学家M吉卡(Matila Ghyka)写的这本《数学概览:生命·艺术·几何》,试图按照古典的美学观点——特别是柏拉图的观点,来解释并表达隐藏在自然之美、生物之美以及人类艺术作品之美背后的数学原理——或更准确地说,几何原理。 《数学概览:生命#艺术#几何》只涉及非常基础的数学知识,内含多幅插图,还有不少包含真知灼见或具有哲学意义的评述。作者通过分析我们熟悉的事物,给出关于几何学、人体和生物组织、建筑、美术作品中对称性和比例等知识相当全面的介绍。特别有价值的是关于古典建筑中对称性应用的讨论。 阅读《数学概览:生命#艺术#几何》不仅令人感到愉快,而且从中可以学到许多知识。它在古典艺术、建筑和生物学的背景之下,以对称性(或美)为关键概念,熟练地编织出一张综合历史、哲学
本书在原有"数学教材分析"课程的基础上,重点介绍了新扩充的内容.特别是在《普通高中数学课程标准》选修系列中的几何内容.并力图给数学教师一个几何知识的整体结构和几何的基本思想方法,而不是针对新教材中的几何内容的具体分析.书中既有传统的几何逻辑推理,也有现代几何公理化的体系;既有古老的欧氏《几何原本》的介绍,又有标志的数学进入现代数学时期的非欧几何和现代几何--凸体几何的知识呈现。本书可作为高校数学教师教育"中学数学教材分析"课程的教材,也可以作为数学教师继续教育的培训教材和数学学科教学研究的参考书.