全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学史上的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和"超立体"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种"普遍"的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
本书为三角形趣谈,全书共分10章,每章后配有练习题,书后附有习题参考答案。本书适合初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教师进修学院数学专业开设的“竞赛数学”课教材及*、省级骨干教师培训班参考使用。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
代数拓扑 同伦理论描述了同伦理论。它得以兴旺发展,应归功于W. Hurewicz1935年引进同伦群以及S. Eilenberg用同伦群引进关于映射扩张的障碍类。同伦理论包括同伦群 n(X),相对同伦群、上同伦群、谱序列以及障碍理论。我们还详细讨论了第1同伦群(也称为基本群) 1(X),它在同伦群中性质知道*多,与它有关的研究成果也*多。我们将展示近代微分几何中曲率与基本群相关的一些成果。同调群与同伦群都是拓扑不变量,也都是同伦不变量。他们是比点集拓扑中得拓扑不变量(如连通性、紧致性)更难、更复杂、更高档次的不变量。我们将给出用连通性、紧致性不能判断不同胚、不同伦,而用同调群或者同伦群却能判断不同胚、不同伦的种种具体实例。*后,还给出了球面 Sn的弱冠同伦群的结果。
本书是《数学与人文》丛书为纪念陈省身先生诞辰100 周年而出版的专辑。 书中*部分选登了历史上伟大的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展; 并介绍了索菲斯 李、嘉当、布拉施克等的生平和工作, 陈省身在继承了这些前辈们的成就基础上, 开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者, 以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写: 第三部分中的纪念文章, 反映了陈先生扎在中国传统文化中深深的根, 以及他致力于推进中国数学事业的发展, 关心、帮助年轻人的伟大人格; 该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读, 包括陈省身数学工作的介绍, 纪念陈省身的自述文章和数学研究;*
本书根据作者近年来多次在南开大学讲授黎曼几何的讲稿写成,可以作为黎曼几何的入门教材,主要介绍黎曼几何的基本概念与基本方法。全书共十四讲,依次介绍黎曼流形、黎曼联络、测地线、曲率等基本概念;其间介绍弧长的变分公式以及Jacobi场等基本方法,并讨论黎曼流形上的几何变换、微分算子、完备性、比较定理等;最后,作为黎曼流形的重要实例,介绍了齐性黎曼流形。每一讲都配有适量的例子和重要的应用,以及少量习题,以加深对相关概念和方法的理解。本书强调几何背景,着重介绍几何直观比较明确的一些定理,定理的证明也以经典微分几何方法为主。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
《现代几何学 方法与应用》是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
本书为 六宫变型数独 系列的*本,系统地介绍了六宫对角线的解法。在六宫对角线的解法中,*次以出版的形式,清晰定义了共同影响的解题思路。本书选择常见的题型,通过典型的例题,详细讲解每一步的思考方法,手把手教读者如何一步步分析解决各类题目。《BR》 本书150道练习题,按照由浅入深、由易至难的顺序编写。有些题目难度甚至比一般的比赛题目更难一些。无论这些题目难易程度如何,都是可以用逻辑推导出来的。
《卡拉比–丘流形和相关几何》是由2001年夏天norway,nordfjordeid讲述辛几何的讲义扩展而成。突出讲述calabi-yau是本书的*特点。部分讲述完整群和已校准子流形,强调特殊拉格朗日算符子流形和syz猜想;第二部分运用代数几何讲述calabi-yau流形和镜子对称。后一部分讲述紧hyperkahler流形,它具有的几何结果和calabi-yau流形有很大的关系。各部分之间过渡自然,衔接紧密紧密,是一部很好的教程。目次:黎曼完整群和已校准的几何;calabi-yau流形和镜子对称;紧hyperk?hler流形。 读者对象:数学专业的高年级本科生,研究生和科研人员。
本书共分十三章,重点讲解投影的基本知识、点线面的投影、立体的投影、轴测投影、组合形体、标高投影、立体表面展开等内容。通过实例,图文结合、循序渐进地介绍了画法几何学的基本知识、读图思路。可作为土木工程、道桥工程、城市地下空间工程、安全、力学、测绘、环境工程、暖通、给排水、建筑学、园林、规划、环境设计、工程管理、造价、土地、房地产、城市、物业、机械、交通、物流、电气、自动化、智能、通信、信息等专业本科、专科学生的教学用书,也可供相关工程技术人员参考。 与本书配套使用的《画法几何学习题及解答》(周佳新主编)由化学工业出版社同时出版。 教材和习题及解答均有配套的PPT版课件。
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
本书是根据复旦大学的教材改编而成的。全书共分6章,主要介绍坐标系统、变换、机构运动的数学表示、曲线模型、曲面模型、共轭曲面等内容。 本书可供高等学校有关专业用作应用几何课程的教材,也可供从事应用数学工作以及计算机辅助设计和制造的科技工作者参考。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。 本书旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习本书的起点低,了解交换代数和代数变量的基本知识即可。本书揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习本书是相当有益的,虽然不是必要。目次:基本定义;例子;射影概型;经典结构;局部结构;概型和函子。
【内容简介】 本书研究了反演变换及其性质、圆与反演变换、两圆的互反性等几何知识,系统地阐述了这些几何变换的理论和它们在几何证题方面的应用. 本书写得简明扼要,通俗易懂,引人入胜,是中学生、大学低年级学生以及他们的教师和几何爱好者的一本很好的参考书.
本书的目的是从直观、直觉的方面,呈现几何学之貌, 几何 在此书中得到非常广泛的解释,除了平面曲线的解析几何,曲线和曲面的微分几何之类的一般几何外,它还包括了共形映射、极小曲面、数的几何及其在数论中令人惊奇的应用、位形空间之几何、多丽体与曲面的拓扑等。《数学概览:直观几何(下册)》每一章都是从非常简单和基本的概念开始;然后向读者们演示,如何把困难的结果和理论归结为简单的东西,以及数学的不同部分是如何相互关联的。《数学概览:直观几何(下册)》还收录了由亚历山德罗夫写的关于拓扑学的附录,作为对《直观几何》关于拓扑学系统知识方面很好的补充。