本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《吉米多维奇数学分析习题集题解5(第3版)》四千多道习题,数量多,内容丰富,由浅入深,部分题目难度大。涉及的内容有函数与极限,单变量函数的微分学,不定积分,定积分,级数,多变量函数的微分学,带参变量积分以及重积分与曲线积分、曲面积分等等,概括了数学分析的全部主题。当前,我国广大读者,特别是肯于刻苦自学的广大数学爱好者,在为四个现代化而勤奋学习的热潮中,迫切需要对一些疑难习题有一个较明确的问答。有鉴于此,我们物约作者,将全书4462题的所有解答汇辑成书,共分六册出版。本书可以作为高等院校的教学参考用书,同时也可作为广大读者在自学微积、分过程中的参考用书。
近些年随着技术的快速发展,多组学数据越来越广泛地应用在了生物及医学研究领域,这些丰富的实验数据成为了精准医疗的重要支撑,但同时也给统计学家提出了严峻的考验,如何处理分析这些数据成了重要的研究课题。本书主要面向复杂疾病中产生的复杂数据进行统计建模和计算,有效整合多组学数据 ,对复杂疾病的机理认识和风险预测具有重要的意义。本书结构合理、概念清晰,可作为对统计遗传、生物统计等方面感兴趣的研究人员的学习资料。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书的主要内容包括:误差与范数,非线性方程(组)的数值解法,解线性方程组的直接方法,解线性方程组的迭代法,矩阵特征值与特征向量问题的计算,函数的插值方法,曲线拟合与函数逼近,数值微分,数值积分,常微分方程(组)求解,用差分法求偏微分方程数值解。本书可作为各类高等学校数学本科专业及非数学专业高年级学生数值分析教材及上机指导用书,也适用于教师及工程技术人员参考。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,最富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国数学家费定晖,周学圣等人将其全部解出,并且反复演算,最终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
《北京大学数学丛书·矩阵计算的理论与方法》系统阐述了矩阵计算这门学科的基础理论、基本方法和近十几年来发展成熟并得到了广泛应用的新成果。内容包括:矩阵知识的复习和补充,矩阵计算概论;求解线性方程组的直接法和迭代法,线性二乘问题,共轭梯度法;求解特征值问题的QR方法和同伦方法;Lanczos方法以及求解Jacobi矩阵特征值反问题的正交约化方法等。《北京大学数学丛书·矩阵计算的理论与方法》取材上,既注重基础理论的严谨性、方法的实用性,又保持了内容的新颖性,反映了该学科的进展。《北京大学数学丛书·矩阵计算的理论与方法》内容自封,各章之间相对独立,可适用于不同读者的需要。
《数值方法》系统讲解数值方法,作者在第1版的基础上进行了较多修改。主要内容包括误差的概念、非线性方程求根方法、线性方程组求解、矩阵的特征值与特征向量的计算、插值、曲线拟合与函数逼近、数值积分方法、常微分方程求解、偏微分方程求解等。书中包含丰富的实例和练习,并且介绍了如何应用MATLAB软件完成相关的求解工作。
本书由美国康奈尔大学Rick Durrett教授撰写,书中反映了过去半个多世纪概率论与随机过程的巨大发展,体现了概率论与其他学科深刻联系以及在工程、经济、金融等方面的应用,继承了美国在概率论教育实践中所积累的经验。本书选材恰当,编排合理,难度适中,兼顾理论与应用,契合当今研究生教学的实际情况,被美国多所高校选为研究生教材。 本书内容包括大数定律、中心极限定理、随机游动、鞅论、马氏链、遍历定理、布朗运动等。附录部分收录了所需的测度论知识。此书宜为概率统计专业研究生教材。对于学过概率论的学者而言,这也不失为一本出色的参考书。
《测度与概率(第2版)/普通高等教育“十一五”规划教材·数学与应用数学基础课系列教材》论述测度论和以测度为基础的概率论的基本知识和方法,包括集及其势、距离空间、测度与概率、可测函数与随机变量、积分与数学期望、乘积测度与独立、Radon-Nikodym定理与条件期望、概率极限理论等。《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的特点是读者不必学习实变函数论而学习测度论;测度论与概率论的基本内容紧密结合而更有利于理解二者的关系及其实质;在《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的基本目标下,尽可能使内容现代化;《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》文字通畅、条理清楚、论述严谨、便于学习;每节后都配有较多的
《博学·经济学系列:统计学原理(第7版)》共分八章,即绪论、统计调查与整理、综合指标、动态数列、统计指数、抽样调查、相关与回归分析、国民经济核算。这次修订,主要对各章的练习题作了调整和增补,改写了第五章、第六章、第七章、第八章,同时对书中的统计资料作了更新。前六版受到读者的广泛好评。 《博学·经济学系列:统计学原理(第7版)》的特点是实用、简明,每章后有练习题并附有习题解答。 《博学·经济学系列:统计学原理(第7版)》适合各大专院校经济、管理、金融等专业师生。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
本书是由一位数学大师倾注了极大的热情和精力,为有志于认真、系统地学习微积分的学生撰写的一本教材。书中内容涉及多元微积分,包括:多元函数,多元微分、多元积分的法则,以及曲线和曲面。作者首先使用积分记号,从Arzelà定理导出微积分定理,然后详细介绍定义在矩形上的多元函数的积分和一般情况下的多元函数的积分,最后导出曲线长度公式和曲面面积公式。 本书逻辑严密,采用的大量图示增强了表述的直观性,可作为高等院校本科和专科学生学习微积分的教材或参考书。
本书系统讲述统计中多元分布的基本理论和常用的多元数据分析方法,多元分布理论包括Wishart分布、T2分布、A分布、多元Beta分布、多元正态的参数估计和假设检验及一般多元分布的参数估计和假设检验理论,多元数据分析方法包括多元线性回归模型、判别分析、主成分分析、因子分析、相应分析、聚类分析、典型相关分析和多维标度法,既强调作为一个学科分支的理论系统性,对一些基本定理给出了必要而简明的数学推导,又注重数据分析方法的多样性,对各方法从背景、数学工具的使用、计算步骤到应用技巧及各种方法之间的联系,都有较详细的阐述,包括近期的一些新发展,书中给出一些有启发性的实例和习题,书末附录给出一些代数补充知识。 本书可作为高等院校数学系、数理统计或统计系、计量经济系、生物统计系等有关学科专业的高年级本科生、
本书展示如何用Python程序将不同格式的数据处理和分析任务规模化和自动化。主要内容包括:Python基础知识介绍、CSV文件和Excel文件读写、数据库的操作、示例程序演示、图表的创建,等等。
本书追溯了统计学如何误入歧途的历史(300多年),从十七世纪数学家雅各布?伯努利的开创性工作开始,一直到赌博、天文学和遗传学中对统计学的运用。作者讲述了互相竞争的统计学派之间的争斗,探讨了催生该学科的令人惊讶的人类问题(种族主义)以及使其脱轨的所有人类缺点。例如,十九世纪和二十世纪里有影响力的人发展出一种他们声称是纯粹客观的统计方法,以压制对其政治议程(包括优生学)的批评。作者对概率的数学和逻辑进行了清晰的阐述,深入浅出地将较为复杂的概念介绍给对统计方法感兴趣的读者,这些统计方法实质上构成了我们对世界的理解。他认为,我们需要采取贝叶斯方法——即在用不 信息进行推断时纳入先验知识,以解决危机。本书的内容横跨数学、哲学和文化,解释了为什么我们使用数据的方式出了问题,以及如何解决这个问