这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书是一本关于可靠性的入门书,讲述可靠性的基本概念,并对常用的寿命分布下的各种可靠性特征的点估计、区间估计、假设检验和加速寿命试验作出较为详尽的叙述,对*近国际上兴起的退化数据处理和贝叶斯分布两个专题作了较多的介绍。读完本书可转入可靠性专业文献阅读。 本书适用于相关专业的研究生和教师,对于可靠性工作者也有着重要的参考价值,本书前五章部分内容可作为本科生选修课教材。
20世纪以来,概率论逐渐渗入到自然科学、社会科学以及人们的日常生活中。无论是在研究领域,还是在教育领域,它愈来愈成为重要的学科之一。在概率论发展历史上,18、19世纪之交法国科学家拉普拉斯具有特殊的地位。 拉普拉斯在他的纯粹与应用数学的众多严格的学术著作之外,还出版了为普通读者写的两篇通俗文章,《关于概率的哲学随笔(双语版)》就是其中的一篇,它构成了《拉普拉斯全集》第7卷中的巨著《概率的分析理论》的引言。 《关于概率的哲学随笔(双语版)》的意图就是让读者不借助较深的数学知识就能了解概率的原理,作者本质上将数学对象以非数学的面貌呈现,用大众化的语言详细论述当时概率论的原理和一般结论。 拉普拉斯概率理论在19世纪的概率论发展史上占据了中心和统治地位,对19世纪的概率论的发展产生了
本书是剑桥大学统计实验室的戴维 威廉姆斯教授在为剑桥大学三年级大学生所开设课程的讲义的基础上写成的 , 是一本基于测度论的方法来介绍概率论的严格理论的入门书。 该书的*特点与新颖之处是用了近三分之一的篇幅来介绍先进的鞅的理论与方法(这一点连作者本人也颇为自许); 此外,还有如从第 4 章 独立性 开始便引入 - 代数化的表达方式 , 将 - 代数视为总结、综述信息的一种自然的工具 , 这对于后面条件期望概念的一般化与鞅的理论的叙述都是至关重要的。 再如将某些定理的叙述、阐释与定理的证明分开进行(将定理的证明放在附录中) , 这样更便于读者自学。作者学养深厚、涉猎广博、文笔生动 , 书中内容涉及概率论的众多分支领域 , 信息量巨大 , 且不乏一些有趣并富于启发性的例子 , 相信读者阅后定能获益良多。
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
c德拉歇利和P·A梅耶的五卷本巨著《概率与位势》是*分析领域中的经典著作。 本书为《概率与位势》的第1卷。前两章包含了完整的积分理论及概率论工作者所需要的该理论的各种变体;章三章介绍了解析集和Choquet窖度的理论:第四章介绍了*过程理论。 本书可作为概率及*分析等相关专业本科生、研究生的教学参考书.也可供概率、金融等领域的科研工作者参考。
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是俄罗斯著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本习题集是作者在长期积累的基础上精心编写而成的,共收集了1500 余道习题(包括子题),它们与作者的《概率》(2004版)二卷本联系紧密,并按照同样的顺序编排。除了用来检查对二卷本中的概念、结论掌握情况的习题外,习题集中还包括需要较大创造性来解答的中等和高等难度的习题,以及作为二卷本内容补充的习题。大部分习题都附有提示。在附录中还解释了本书所用到的基本符号。并对与本书内容有关的概率论、组合论以及位势理论的基本概念作了简要的介绍。 本书适合概率统计、数学
在数学科学的几乎所有的分支中,不等式常常起着重要的甚至是关键的作用。本书搜集整理了概率论中一批常用的基本不等式,并对其中的绝大多数不等式给出了证明。除了一些熟知的不等式以外,书中对某些不等式还提供了相关的参考文献。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
《普通高等教育“十二五”创新型规划教材:应用概率论基础》主要内容包括集合论基础、*事件和概率、*变量、*变量的数字特征、概率极限理论、数理统计基本概念、参数估计、假设检验等。《普通高等教育“十二五”创新型规划教材:应用概率论基础》是在总结教学经验的基础上汇编成册的,内容翔实,表述严谨,深入浅出,既清晰地阐明了各个概念和定理,又能与工程应用紧密结合,有助于读者掌握和理解概率论基础知识,《普通高等教育“十二五”创新型规划教材:应用概率论基础》可作为大学工程类专业本科生“概率论与数理统计”课程的教材,还可以为工程技术人员参考使用。
作为数据分析的一种有效的科学工具,统计方法与技术已被广泛应用于理论与实践的各个领域,是各领域理论研究者和实际工作者的知识与技能。本书在《统计学》(第二版)的基础上,充分听取专家与读者的意见之后重新编写,并对有关内容和体系进行了调整,对数据进行了更新。本书内容主要包括描述统计(数据的收集、数据整理与显示、数据分布特征的测度)、推断统计(抽样与参数估计、假设检验、方差分析)、社会经济中常用的统计方法与技术(列联表、相关与回归分析、时间序列分析与预测、统计指数、统计综合评价)三部分内容。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
概率论与数理统计是大学理工科的主要基础课程之一,也是硕士研究生入学考试的一门重要课程。编写本书的目的是帮助读者正确理解和掌握一些基本概念与解题方法以提高学习效率,并为学生提供一份课外复习资料。蒋家尚主编的这本《概率论与数理统计习题课教程》的内容体系参照了浙江大学盛骤等编写的《概率论与数理统计》,适用于各类各层次的概率论与数理统计学习者,对报考硕士研究生的读者亦有的帮助,也可作为教师的教学参考用书。