基于项目学习的理论与实践,结合师范生的数学核心素养要求,以魔术游戏为载体,开发项目教学资源是有意义的。魔术游戏中的数学经多轮教学实践,使学生在真实的情境中经历观察、体验、探究、交流、感悟的过程,体会素养的发生、发展、深化与积淀。 该研究总结凝练了以初等数学知识、原理为主,以扑克牌、数表、骰子等为道具设计的典型魔术游戏项目;提出了魔术项目设计的六环节:魔术示范-魔术揭秘-魔术拓展-数学素养-实践思考-发展评价;编写了促进数学核心素养落地的魔术教学案例。 该著作的创新之处,首先,魔术、游戏与数学相结合形成研究的整体内容,基于读者的视觉和操作偏好,遵循教、学、做、创的思路编排内容,符合知、行、思的认知发展规律,凸显科学性;其次,魔术探究从形象到抽象、特殊到一般、猜想到推理、模型化到应用的
数学不仅有抽象的计算和公式,还与人类文化和思维紧密相关。 数学对生活的影响无处不在,它甚至可以改变我们对世界的认知。原来数学和语文、美术、科学这些学科竟然密不可分。用故事串起数学明珠,带你畅游神秘数学王国,书中每一页都充满惊喜与挑战!从电影里幸存者的故事,到游戏中藏着的概率,再到战争中的密码学,都有数学在其中起作用!不仅如此,数学还有属于自己的美学和哲学。它像艺术家一样创作美丽的图案,像哲学家一样思考世界,像诗人一样描绘世界,像侦探一样揭破谜案。 加入这场数学派对,你会发现:数学或许不是你以为的那样,它不仅不枯燥,还蕴藏着无限的乐趣。
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
本书是根据*颁布的《理工科类大学物理实验课程教学基本要求》,结合大学物理实验仪器设备实际情况,在总结多年大学物理实验教学实践经验的基础上编写而成的。 全书共分4章,绪论部分介绍了物理实验的目的和任务、基本规则和要求,第1章介绍了测量误差理论、不确定度、实验数据处理方法等内容,第2章共9个基础实验,第3章共12个近代物理与综合应用性实验,第4章共9个研究及设计性实验,用于学生第二课堂的自主学习,附录中给出了常用的物理参数。书中所有思考题都配有参考答案,大部分实验项目有配套视频,方便在线学习。 本书可作为高等学校工科各专业的大学物理实验课程教材和参考书。
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
在经济学中,绝大多数的非合作博弈理论集中研究博弈中的均衡问题,尤其是纳什均衡及其精炼。对均衡什么时候出现以及为什么均衡会出现。传统解释是,均衡是在博弈的规则、参与人的理性以及参与人的支付函数都是共同知识的情况下,由参与人的分析和自省所得出的结果。不论是在概念上还是在实证上,这个理论都存在许多问题。 在《博弈学习理论》一书中,朱·弗登伯格和戴维·K·莱文提出了另一种解释:均衡是并非完全理性的参与人随着时间的推移寻求*化这一过程的长期结果。他们研究的模型为均衡理论提供了基础,并为经济学家评价和改进传统的均衡概念提供了有用的方法。
A.H.施利亚耶夫编著的《*金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“*金融数学全书”。 第二卷有关“理论”的四章是:“*金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住
《认识数学之美:复旦大学附属中学学生数学论文集粹》收集了自2011年“复旦附中课程体系建设方案”实施以来,该校学生在“数学欣赏”“数学研究”选修课汪杰良老师指导下,进行课题研究的成果。这些成果以数学论文的形式发表在各类专业数学刊物上。书中每篇论文都附有指导老师的点评,以及学生撰写数学论文的心得体会。读者可以从中体会到数学之美,也可以体会到教师指导学生探索数学之美的心路历程。
本书为了满足普通高等院校及高职高专类院校经济、金融、管理专业本专科学生学习的需要,定位在\\\\\\\"以应用为目的,以必需够用为度”的平台上,简略了定理的推导、证明,采用了学生容易理解的方式叙述,并选配了适量的例题、练习及章节自测,使学生掌握基本理论和解题方法,并结合应用例题解决经济和日常生活中遇到的问题,提高学生应用数学和数学应用的能力。 本书内容包括函数、极限与连续、导数及应用、积分的计算及应用、行列式、矩阵、线性方程组及线性规划等,并在附录中介绍了数学实验,每章节附有习题。
由于优化模型在各专业的研究领域中有着极其广泛的应用,本书以优化模型为主题讲述了几类较为基础且重要的数学模型,包括线性规划模型、非线性规划模型、整数规划模型、多目标规划模型、目标规划模型、动态规划模型、图与网络优化模型,共计七个章节。针对往年课程教学过程中学生普遍提出的困惑,即求解数学模型对于学生具有一定编程基础要求。因此,在各章节都以一定篇幅介绍三类常用求解优化模型的软件语言:LINGO、MATLAB以及Python。LINGO软件对于没有编程基础的学生也能够较快地掌握。MATLAB软件以及Python软件是大部分工科学生的基础工具,可在不增加学生负担学习成本上,着重介绍如何利用软件解决优化问题。
数论,分为传统数论与非传统数论。众数学,隶属于非传统数论的范畴,隐藏于河图、洛书、八卦为代表的东方文明之中,隐匿于高度发达的玛雅文明、源远流长的埃及文明、灿烂 的犹太文化之中,而且数学老师、数学教材、数学书籍,甚至于数学家都很少提及。众数学的加减乘除四则运算、内涵九进制运算,是一种精准九进制运算,即“精准九定律”。 这是一部关于素数发展与进展的通俗读物。 章提出了众数学是突破素数壁垒的思想方法与技术工具。第二章阐述了众数学的四则运算法则与规律。第三章着重阐述了素数的分解规律与分布规律。 第四章着重阐述了众数学在数论方面的重要应用。 这又是一部关于素数发展与进展的科普读物。阅读本书,可以带你遨游数学的迷宫,帮助你认识数学、认识素数、认识数论,享受到数学的无穷魅力。
本书是职业技术教育基础课教材。本书根据高等职业院校学生入学知识结构况,结合岗位需求、专业知识需求,从“初等数学”和“高等数学”中取与架构,为职业院校学生构建一本好用、适用,能让学生循序掌握数学知识,提升数学素养,为提升专业技能打下良好基础。本书分初等数学、高等数学上下篇,内容共七章,主括方程与不等式、函数、三角函数、立体几何、解析几何、极坐标与参数方程、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用。