本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
无
吉奥丹诺编写的《数学建模(原书第5版)》旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。 《数学建模(原书第5版)》对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
《数学建模算法与应用》 《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏很小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。全书系统全面,各章节相对独立。《数学建模算法与应用(第2版)》所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,服了很多读者看懂算法却解决不了实际问题的困难。 《数学建模算法与应用习题解答(第2版)/数学建模系列丛书》 本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划
《动力系统反控制方法及其应用》详细论述了离散时间系统、连续时间系统和切换系统反控制(即混沌化)的研究方法与应用及其电路设计与实现,共20章。~9章主要介绍离散时间系统反控制,包括数学预备知识与混沌的基本概念,离散时间系统反控制的Chen-Lai算法及其电路实现,离散时间系统反控制的Wang-Chen算法,单峰和多峰映射,离散正弦多峰映射,线性取模运算多峰映射,混沌控制与同步,离散时间系统的单变量反控制、同步及其在混沌序列密码中的应用,高维广义超混沌猫映射及其在分组图像加密中的应用等。0~19章主要介绍连续时间系统与切换系统的反控制,包括连续时间系统与切换系统反控制方法概述,连续时间线性系统的反控制,连续时间非线性系统的反控制,三维切换系统的反控制,四维切换系统的反控制,具有指标1鞍焦平衡点和相同特征平面的
本书系统介绍忆阻神经网络的动力学性态分析与同步控制问题的数学建模思想、典型理论方法和主要研究成果。主要内容涉及忆阻神经网络的耗散性与无源性分析、稳定性分析和同步控制方法,也介绍有关耦合忆阻神经网络与分数阶忆阻神经网络同步控制研究成果,并在同步控制分析基础上介绍忆阻神经网络在图像保密通信、信号处理与医学图像处理中的具体应用。本书重点介绍忆阻神经网络动力学与同步控制的理论分析和数值模拟方法,内容丰富全面、方法实用完备,反映了当前国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者系统了解和掌握忆阻神经网络动力学与同步控制的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
本书深入浅出地介绍了与数学建模基础有关的内容,重点放在微分方程模型、运筹学模型和数理统计模型方面,着重讲述建模的基本思想和模型求解的基本方法,以及运用数学软件求解数学模型的方法。包括数学建模人门、微分方程模型、线性规划模型、动态规划模型、最优化模型、图论与网络模型、数理统计模型、多元分析模型和计算机模拟等9章内容,同时还包括三个附录,分别是MATLAB软件的使用、LINGO软件的使用和R软件的使用。本书的重点放在数学模型的建立以及问题的分析与描述上,使读者能够举一反三,运用计算机软件解决实际问题。
本书是一部教科书,书中主要介绍连续介质中的数学模型,包括连续介质的一些基本概念、术语和定理,以及流体力学、固体力学中常用的一些模型;同时还介绍了力学中的一些波现象。 要目:(一)连续力学中的基本概念:系统运动描述;动力学基本原理;柯西应力张量的应用;形变张量、形变率张量和本构定律;能量方程和激波方程(二)流体物理学:牛顿流体的一般特性;非粘性流;粘性流和热力学;磁流体动力学和等离子体的惯性约束;燃烧方程;大气及海洋运动方程。(三)固体力学:线性弹性的一般方程;经典问题;能量定理;非线性本构定律和均匀化问题。(四)波现象介绍:力学中的线性波动方程,KdV方程,非线性薛定谔方程。 读者对象:应用数学、物理学、力学和相关专业的大学高年级本科生和低年级研究生。
作为针对20世纪自然科学形式逻辑基础进行逻辑审查的系列丛书,《两类相对论形式逻辑分析》汇集了著者杨本洛自2005年末起所撰写,主要涉及两类“相对论”数学基础问题的若干文章。与Maxwell的电磁场经典理论体系仍然崇尚“经验事实”基础,只因为理性认识和数学工具的历史局限性几乎必然隐含许多逻辑不当完全不同,两类“相对论”以及它们的数学工具——其主要代表是Riemann微分几何——只允许建立在“约定论”基础之上。然而,只要是“约定论”的,就逻辑地因为缺失“实体论”基础的支撑及其相应构造约束的限制,必然自始至终充满矛盾和悖谬,并造成Einstein以及许多现代微分几何研究者不可能真正读懂他们仅仅凭借主观意志创造出来的“约定——某个团体共同信念或意向”的反常;与此同时,诸如如何表现曲面上向量场梯度场之类的具体命题却至
《金融中的数值方法和优化(英文)》旨在为读者介绍金融计算工具—基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得《金融中的数值方法和优化(英文)》的参考价值大大提高。