《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书最具价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书是系统地介绍各类多维奇异积分的高精度算法的专著.全书共5章:第1章介绍面型与点型奇异积分(包括弱奇异、Cauchy强奇异、Hadamard超奇异积分)的概念与存在条件及一些基本性质,并介绍各类奇异积分算子的定义和基本性质;第2章简略介绍正常积分的数值方法和加速收敛方法;第3章主要论述一维各类奇异积分与含参数的奇异积分的高精度算法以及各类奇异积分的加速收敛方法,同时给出了外推的稳定性分析;第4章主要论述各类多维奇异积分与含参的奇异积分的高精度算法以及各类奇异积分的加速收敛方法;第3、4章是本书的核心内容;第5章介绍奇异积分与奇异积分算子的渐近展开式.本书取材新颖,算例翔实,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点.
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
本书是关于积分方程的高精度算法的*本书.全书分为五章:*章阐述积分方程与积分算子以及相关的泛函分析理论,方便读者无需特殊准备便可以通读本书;第二章阐述数值积分,重点介绍多维积分与反常积分的外推和分裂外推方法,其中关于带参数的超奇积分的数值方法与外推是首次见于专著;第三、四、五章分别阐述Volterra型积分方程、Fredholm型积分方程和边界积分方程的高精度算法.本书取材新颖,与同类书的内容不雷同,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点,适合从事积分方程和边界元计算的科研工作者和工程计算人员参考,也适合计算数学和应用数学的博士生、硕士生和本科高年级学生作为专业或参考教材.
王自强、曹俊英编写的《统计计算及其程序实现》以统计理论、数值分析、*优化理论与算法为基础,以MATLAB软件及R软件为平台,并把统计理论、数值分析、*优化理论与算法和计算机实现有机地结合起来,让读者理解和掌握统计方法解决实际问题的全过程。本书的主要内容有:基本的数值计算方法、* 优化算法、统计计算数值方法和多元统计方法,其中包括线性方程组的数值解法、非线性方程的数值解法、数值积分、线性规划问题的数值计算、非线性优化的数值计算、多元相关与回归分析、方差分析、线性与非线性模型及应用多元分析。 本书可以作为理工、经济、管理、统计等专业的高年级本科生和研究生的数理统计、*优化方法和数值分析的辅导教材或教学参考书,也可以作为统计计算课程的教材。
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
本书以进化计算与粗糙集为研究目标,内容包括进化计算的数列模型及其在收敛性分析中的应用,基于种群信息熵的思维进化算法自适应搜索策略研究,基于位编码可分辨矩阵的规则提取方法的研究,基于思维进化算法和粗糙集的图像处理方法的研究等。 本书可作为计算机专业师生教学参考用书,也可供计算机相关专业研究人员、从业人员阅读。
本书是作者在多年为理工科硕士研究生讲授计算方法课程的基础上编写而成的。全书共分11章,内容包括:计算方法概论,数值计算理论基础,非线性方程求根,线性与非线性方程组的数值解法,矩阵特征值与特征向量的计算,插值与逼近,数值积分与微分,常微分方程初值问题与边值问题的数值解法。本书选编了较多不同层次的例题和习题供教师选择,并在各章引人数学软件Matlab的应用实例,以提高学生的学习兴趣和应用能力。对某些较深入的内容,本书以附录形式放在相应章节的后面,教师可以根据学时选讲或不讲,不影响整个体系。本书内容丰富,阐述简明易懂,注重理论联系实际。可作为理工科大学非计算数学专业的研究生或高年级本科生的教材(适合36-64学时),也可作为科技工作者的参考书。
本书对近年来认知计算和多目标优化领域常见的理论及技术进行了较为全面的阐述和总结,并结合作者多年的研究成果,对相关理论及技术在应用领域的实践情况进行了展示和报告。全书从认知计算和多目标优化两个方面展开,主要内容包含以下几个方面:认知科学及其特点,多目标优化问题及其求解方法,高效免疫多目标SAR图像自动分割算法,基于智能计算的认知无线网络频谱分配与频谱决策方法。
本书以自封闭的形式系统介绍了线性不适定问题的正则化求解方法,以及在数学物理反问题研究中的一些应用。主要内容包括:不适定问题的基本概念和特点,研究不适定问题需要的基本数学工具和方法,求解不适定问题的标准的正则化方法及近年来的新发展,以及正则化方法在逆时热传导、数值微分、逆散射等领域中的应用。本书的内容包含了作者和其他学者近几年来的有关工作。
本书是同济大学计算数学教研室几位老师集体智慧的结晶,内容涉及数值计算的基本内容,如函数插值与函数逼近、线性与非线性方程(组)的求解、数值积分与微分、矩阵的特征值与特征向量的计算、常微分方程的近似数值解,还阐述了当今科学与工程研究中经常遇到的数值计算问题求解的新方法,如快速傅里叶变换、蒙特卡罗*方法(高维积分计算)、数值求导的稳定算法、大型线性方程组的分块迭代算法等;在介绍一些重要的典型算法时,附上了在工程中广泛使用的MATLAB程序书后附有丰富的习题和数值实验题并提供了配套的习题解答。 本书适合作为高等院校本科生和工科研究生“数值计算”课程的教材,也适合相关科研人员参考。