本书与其它传统著作不同,巴塔努尼编著的《对称和凝聚态物理学中的计算方法》首次系统地介绍了现代物理学中三个非常重要的主题:对称、凝聚态物理和计算方法以及它们之间的有机联系。本书展示了如何有效地利用群论来研究与对称性有关的实际物理问题,首先介绍了对称性,进而引入群论并详细介绍了群的表示理论、特征标的计算、直积群和空间群等,然后讲解利用群论研究固体的电子性质以及表面动力学特性,此外还包括群论在傅立叶晶体学,准晶和非公度系统中的高级应用。本书包括大量的mathematica示例程序和150多道练习,可以帮助读者进一步理解概念。本书是凝聚态物理,材料科学和化学专业的研究生的理想教材。
现代凝聚态和超冷原子物理的实验发展对理论学家来说是巨大的挑战。该书以利于教学的方式介绍了粒子物理中的量子场论,重点介绍了该理论在具体问题中的应用。 第2版包括两个新的章节,研究用路径积分分析经典量子非平衡态的问题。其他章节涵了多体技术和泛函积分,重整化群方法、响应函数理论和拓扑学。该书重点介绍了基本概念和规范化方法操作,但是讨论部分集中在凝聚态物理及其相关领域研究现场的实验应用上。
......
......
......
群论源于19世纪近世代数的发展,本质是一门数学。20世纪初,群论作为刻画并系统分析对称性的理论,开始在物理、化学、材料等物质科学的研究中发挥重要作用。目前,群论已经成为近代物理学不可或缺的基础理论之一。 本书基于笔者在北京大学物理学院多年讲授“群论Ⅰ”课程(该课程重点关注理论基础以及有限群在物质科学研究中的应用)的经验编写而成,系统讲述了群的相关概念以及(有限)群表示论的主要内容,同时还用一定篇幅介绍了群论在物理学,特别是凝聚态物理中的应用。本书分群的基本概念、群表示理论、点群与空间群、群论与量子力学、转动群、置换群、李群李代数初步七章展开,表达深入浅出,力求易于读者理解。 特别值得一提的是,为了让读者在学习与应用之间建立联系,笔者花费了很大精力来组织群论与量子力学这一章的内容
软物质泛指介于固体和流体之间的复杂凝聚态物质(包括高分子、胶体、液晶、颗粒物质、生物体等典型体系),是现代物理学的重要内容。由于软物质体在基础科学和实际应用方面都具有重大意义,它吸引了来自物理、化学、
可解统计模型在凝聚态物理、可积场论和数学中都有重要应用,是理论物理的前沿课题。与椭圆函数相关的格点模型的极限既能给出三角型和有理型的格点模型,又能包含 多的参量,因此受到了特殊的重视本书详细介绍了杨Baxter方程等格点模型的基础知识,同时重点介绍了两种等价的椭圆型格点模型:Belavin模型和IF面模型,旨在分析 Jacobi函数在研究这些模型中的处理方法。书中广泛应用图示法进行推导,这种直观、便于掌握的方法是学习格点模型和可积场论时常用的本书推导详细,便于初学者阅读,可作为学习理论物理的大学生、研究生及相关领域的科技工作者学习格点统计模型的教学参考书。
可解统计模型在凝聚态物理、可积场论和数学中都有重要应用,是理论物理的前沿课题。与椭圆函数相关的格点模型的极限既能给出三角型和有理型的格点模型,又能包含 多的参量,因此受到了特殊的重视本书详细介绍了杨Baxter方程等格点模型的基础知识,同时重点介绍了两种等价的椭圆型格点模型:Belavin模型和IF面模型,旨在分析 Jacobi函数在研究这些模型中的处理方法。书中广泛应用图示法进行推导,这种直观、便于掌握的方法是学习格点模型和可积场论时常用的本书推导详细,便于初学者阅读,可作为学习理论物理的大学生、研究生及相关领域的科技工作者学习格点统计模型的教学参考书。
全书共12章,各章名称分别为:量子状态描述、对称性分析补充、全同多粒子非相对论量子力学——二次量子化方法述评、量子变换理论概要、非相对论量子电动力学、相对论量子力学及缺陷、量子力学的路径积分表述、多道散射理论(I)、多道散射理论(II)、近似计算方法、量子纠缠与混态动力学、量子理论述评。外加8个附录。 本书致力于阐述现代物理学的理论基础。全书体系清晰、内容翔实、叙述清楚、分析透彻,适合作为物理类研究生的公共理论基础教材,也是物理学工作者有用的参考书。为了便于教学和自学,除少量普通的或书中已有答案的习题,其他都给出了解答或有关参阅文献。
......
群论源于19世纪近世代数的发展,本质是一门数学。20世纪初,群论作为刻画并系统分析对称性的理论,开始在物理、化学、材料等物质科学的研究中发挥重要作用。目前,群论已经成为近代物理学不可或缺的基础理论之一。 本书基于笔者在北京大学物理学院多年讲授“群论Ⅰ”课程(该课程重点关注理论基础以及有限群在物质科学研究中的应用)的经验编写而成,系统讲述了群的相关概念以及(有限)群表示论的主要内容,同时还用一定篇幅介绍了群论在物理学,特别是凝聚态物理中的应用。本书分群的基本概念、群表示理论、点群与空间群、群论与量子力学、转动群、置换群、李群李代数初步七章展开,表达深入浅出,力求易于读者理解。 特别值得一提的是,为了让读者在学习与应用之间建立联系,笔者花费了很大精力来组织群论与量子力学这一章的内容
可解统计模型在凝聚态物理、可积场论和数学中都有重要应用,是理论物理的前沿课题。与椭圆函数相关的格点模型的极限既能给出三角型和有理型的格点模型,又能包含 多的参量,因此受到了特殊的重视本书详细介绍了杨Baxter方程等格点模型的基础知识,同时重点介绍了两种等价的椭圆型格点模型:Belavin模型和IF面模型,旨在分析 Jacobi函数在研究这些模型中的处理方法。书中广泛应用图示法进行推导,这种直观、便于掌握的方法是学习格点模型和可积场论时常用的本书推导详细,便于初学者阅读,可作为学习理论物理的大学生、研究生及相关领域的科技工作者学习格点统计模型的教学参考书。
本书包含三条主线:Bose-Einstein凝聚体(BEC),超流体和超导电性。书中首先建立专题的概念,然后介绍必要的数学方法。本书从三个主题中 简单的BEC开始,首先全面回顾了Bose-Einstein理想气体的基础,然后详述了磁捕陷于原子冷却技术和稀化原子气体中的BEC。4He中的超流性较难理解,因为它是强相互作用量子流体。本书介绍了超流性的主要物理现象,以及如何从宏观量子相干性与非对角长程序的主要概念得出超流现象。超导电性的理论分布加以阐述:先讨论较简单的London和GinzbergLandau理论及其主要应用,然后推导量子相干态的数学概念和Bardeen-Cooper-Shridffer(BCS)理论。 一章涉及比较高深的话题,包括3He超流和特异超导体中的 规Cooper对的证据。本书不需要读者具备来了那工资多体理论的知识,必要的数学概念会在需要处予以介绍。
......
软物质泛指介于固体和流体之间的复杂凝聚态物质(包括高分子、胶体、液晶、颗粒物质、生物体等典型体系),是现代物理学的重要内容。由于软物质体在基础科学和实际应用方面都具有重大意义,它吸引了来自物理、化学、
本书详细介绍了凝聚态物理中常用的单体格林函数和多体格林函数的基本理论。对于多体格林函数,介绍了费恩曼图形技术和运动方程法。对格林函数在一些方面的应用做了介绍,主要是在弱耦合超导体、海森伯磁性系统和介观输运方面的应用。《BR》 本书对于概念的说明与公式的推导力求详尽、全面,内容由浅入深。便于读者学习。读者需要具备量子力学和统计力学的基本知识。
群论源于19世纪近世代数的发展,本质是一门数学。20世纪初,群论作为刻画并系统分析对称性的理论,开始在物理、化学、材料等物质科学的研究中发挥重要作用。目前,群论已经成为近代物理学不可或缺的基础理论之一。 本书基于笔者在北京大学物理学院多年讲授“群论Ⅰ”课程(该课程重点关注理论基础以及有限群在物质科学研究中的应用)的经验编写而成,系统讲述了群的相关概念以及(有限)群表示论的主要内容,同时还用一定篇幅介绍了群论在物理学,特别是凝聚态物理中的应用。本书分群的基本概念、群表示理论、点群与空间群、群论与量子力学、转动群、置换群、李群李代数初步七章展开,表达深入浅出,力求易于读者理解。 特别值得一提的是,为了让读者在学习与应用之间建立联系,笔者花费了很大精力来组织群论与量子力学这一章的内容