贴近教材,贴近学生的实际.有利于促进初中活动课程的开展,满足学有余力的学生学习数学的愿望,激发学生学习数学的兴趣,培养学生应用数学的能力和创新的意识,发展他们的数学能力.
本书主要讲解初中几何辅助线的添加方法和技巧,主要内容包括中点模型的构造,角平分模型的构造,弦图的构造及应用、图形的三大变换以及梯形、圆的辅助线添加,每章包含中考分析、知识讲解、方法技巧、经典例题、试题,可以达到学而练的目的,从而使中考几何不再可怕。
本书提供了将公式和数据转换为几何形式的指令,为学生提供了一系列精心设计的问题,旨在阐明函数和图像的功能及属性。首先采用简单的函数来分析构造图的基本方法,然后介绍线性函数、二次三项式、线性函数、幂函数和有理函数等更复杂问题的解决方法。
本书共两部分。第 1 部分介绍平面几何的基础知识,如概念、公理、定理等,并配有大量练习题,以便读者巩固和拓展所学知识。第 2 部分是习题:习题 1 为基本题,是第 1 部分的基础知识的有效补充,同时为解决后面的难题作铺垫;习题 2 通过一些重要的定理证明介绍经典的解题方法;习题 3 主要训练思维;习题 4 则是需要更多思考的竞赛题 . 本书内容充实、精练,语言简洁,旨在夯实基础,拓宽视野,培养兴趣,提高能力,能满足多种层次读者的需求,适合中学生研习,也可供中学数学教师参考。
本书中的 355 道题全部是新编的,并按知识点分类 . 通过对这些题的实践训练,可以强化对平面几何基础知识的掌握,激发兴趣,启迪思维,提高解题能力 . 本书适合数学水平中上的学生使用,供参加全国高中数学联赛之用,也可作为备战中考、理科实验班招生考试的学习资料 .
本书引自美国Springer出版社,是 盖尔范特初中数学新思维 系列丛书中的一本。本书以提出问题、给出所有解题方法、讲解解题思路的顺序,将学生在初中阶段涉及的三角函数问题贯穿起来,让学生在理解概念的同时灵活应用。
坐标方法 是一种将几何图像转换为公式的方法,一种通过数字和字母来描述图像的方法,表示常量和变量。本书探讨了通过坐标方法,几何概念到数字语言的转换,以便定义一个点在空间中的位置。 共分两个部分,*部分介绍直线上点的坐标、平面中点的坐标以及空间中点的坐标,第二部分讨论坐标方法的有趣应用。为了读者能更有效地使用本书,作者在书中边缘留有一系列有用的 道路标志 ,提醒读者需要特别注意的内容,以引导读者进行更深入的探究。
本书是面向中学生的一本简明的代数辅导书,高屋建瓴地总结出了初中代数中的重要知识点,对初中代数的定理、概念等结合例题进行了详细的讲解,并提炼、编制了一些特别能启发思维的练习题。通过这些练习,读者可在初中代数的表达、关键步骤以及书面表达的完整性等方面有所收获和得到启发。本书适合中学生学习,也可供中学数学教师参考。
本书采用循序渐进的方式, 逐步介绍各种基本的计数原理和计数模式, 深入浅出, 例题丰富,着重突出各种计数模式所适用的计数场合, 强调区分计数对象的重要性。对中学生来说,从中不仅可以学到计数知识,而且还可以学到逐步展开、逐步深入地思考问题的治学精神和治学方法. 本书是中学数学教学内容的有力补充, 可供学有余力的中学生课外阅读.
本书是基于北京四中网校优质的数学教学资源和大量学生学习跟踪数据,并与新媒体、新技术相结合,打磨出的一本初中数学通用教辅。全书按专题组织初中数学知识点,配以北京四中名师的视频讲解和知识地图,并依据学习跟踪数据将知识内容和习题进行分层,从而帮助不同层次的学生提升成绩。
面对数学课本中的三角函数,常会让人感到头昏眼花,成串的公式定理更是许多人产生困惑及排斥。你是不是经常会有这样一种感觉:总是被一群公式定理追着跑,却不知道为什么要跑?如果你有这种感觉,那么《睡梦中,学三角》就是为你而写的三角函数学习书。 这本书中有两位主角:一位是爱打瞌睡的小平,他的数学老师叫作 老罩 (老是罩不住);另一位是大M,是小平在睡梦中遇见的 数学守护神 。作者藉由小平和大M的对谈,巧妙地将许多学习的过程以灵活的思维,解析三角函数的含义。交流中,告诉读者如何去学习,用贴近生活的实例来启发思考的途径,把每个章节的公式、应用问题观念串联。书中小平的错误也是许多人在学习过程中的盲点,可以说是贴近学生的缩影。 为何要学?如何去学?学过之后如何应用?书中都有详细的阐述,不同于一般的
用简单漫画讲让学生们认为抽象难懂的数学课。 必学知识与教科书同步,补充内容更宽泛,突破教科书局限。可作为教科书的参考书籍。将数学知识和幽默漫画完美结合,通过数学博士爷爷和孙女之间令人捧腹的日常生活互动,用数学解决生活里的小难题,寓教于乐,让孩子们充分感受到数学的魅力!书中内容包括数的种类(自然数、实数、有理数等)、分解质因数、十进制、四则运算、平方根、集合、方程式、函数、概率统计等,让小读者在轻松、活泼的氛围中学懂数学知识。本套书*的特点,在于打破了传统辅导书以年级分类的方式,围绕初中教材的单元,同时联系小学教材的内容进行讲解。只要对小学数学的内容有基本的掌握,无论现在处于哪个年级,都能相对轻松地掌握初中、高中才会涉及的基础数学概念。