计算广告是一项新兴的研究课题,它涉及大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学等诸多领域的知识。本书从实践出发,系统地介绍计算广告的产品、问题、系统和算法,并且从工业界的视角对这一领域进行具体技术的深入剖析。 本书立足于广告市场的根本问题,从计算广告各个阶段所遇到的市场挑战出发,以广告系统业务形态的需求和变化为主线,依次介绍合约广告系统、竞价广告系统、程序化交易市场等重要课题,并对计算广告涉及的关键技术和算法做深入的探讨。这一版中更是加入了深度学习的基础方法论及其在计算广告中的应用。 无论是互联网公司商业化部门的产品技术人员,还是对个性化系统、大数据变现或交易有兴趣的产品技术人员,传统企业互联网化进程的决策者,传统广告业务的从业者,互联网创
本书围绕精益创业展开讨论,融合了精益创业法、客户开发、商业模式画布和敏捷/持续集成的精华。本书汇聚了100多位创始人、投资人、内部创业者和创新者的成功创业经验,呈现了 30 多个极具价值的案例分析,可以为各阶段的创业者提供行为准则。 如果你是一名创业者,或者你是一名产品开发、产品管理、市场营销、公共关系和投资领域的商务专业人员,那么本书不容错过。
全书分为三大部分: 主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第1章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第2章我们比较了多种不同的数据模型和查询语言,讨论各自的适用场景。接下来第3章主要针对存储引擎,即数据库是如何安排磁盘结构从而提高检索效率。第4章转向数据编码(序列化)方面,包括常见模式的演化历程。 我们将从单机的数据存储转向跨机器的分布式系统,这是扩展性的重要一步,但随之而来的是各种挑战。所以将依次讨论数据远程复制(第5章)、数据分区(第6章)以及事务(第7章)。接下来的第8章包括分布式系统的更多细节,以及分布式环境如何达成一致性与共识(第9章)。 主要针对产生派生数据的系统,所谓派生数据主要指在异构系统中,如果无法用一个数
随着TheDataWarehouseToolkit(1996)第1版的出版发行,RalphKimball为整个行业引入了维度建模技术。从此,维度建模成为一种被广泛接受的表达数据仓库和商业智能(DW/BI)系统中数据的方法。该经典书籍被认为是维度建模技术、模式和实践的资源。 该书汇集了到目前为止全面的维度建模技术。 该书采用新的思路和实践对上一版本进行了全面修订,给出了设计维度模型的全面指南,既适合数据仓库新手,也适合经验丰富的专业人员。 该书涉及的所有技术都基于作者实际从事DW/BI的设计经验,通过实际案例加以描述。 该书主要内容: 实用设计技术 有关维度和事实表的基本和高级技术。 14个案例研究,涉及零售业、电子商务、客户关系管理、采购、库存、订单管理、会计、人力资源、金融服务、医疗卫生、保险、教育、电信和运输等。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
本书结合理论和实践,由浅入深,全方位介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。 本书是一本权威、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的*发展和应用,程序员可以从中探
《向量数据库:大模型驱动的智能检索与应用》系统地介绍向量数据库的原理、技术实现及其应用,重点分析传统数据库在处理高维向量数据时的局限性,并提供相应的解决方案。《向量数据库:大模型驱动的智能检索与应用》分为4个部分,共13章,内容涵盖从理论基础到技术实践的多个方面,详细讨论高维向量表示中的信息丢失、嵌入空间误差和维度诅咒等问题,结合FAISS和Milvus等主流开源工具,深入剖析向量数据库的索引机制、搜索算法和优化策略。通过实际案例,展示向量数据库在推荐系统、行为分析、智能诊断、语义搜索等领域的应用,并特别强调企业级语义搜索系统的开发与部署经验。 《向量数据库:大模型驱动的智能检索与应用》不仅提供深度的理论指导,还通过丰富的案例帮助读者掌握如何构建高效的向量搜索引擎,适合从事搜索引擎与推荐系统开发的
作为一本 Power Query 初级入门读本,《Power Query 智能化数据汇总与分析》不深入介绍 M 函数,而是结合大量的实际案例,利用 Power Query 可视化的操作向导,来解决实际工作中烦琐的数据整理、汇总和分析问题,让读者在短时间内,能够对 Power Query 有一个较为全面的了解和掌握,并能迅速提升数据处理和统计分析效率。 《Power Query 智能化数据汇总与分析》适合具有 Excel 基础知识并经常处理大量数据的各类人员阅读,也可作为大专院校经济类本科生、研究生和 MBA 学员的教材或参考书。
本书全面细致地对当前使用广泛的科学文献可视化软件CiteSpace进行了系统性介绍。主要内容包含了软件简介、数据准备、软件界面、软件功能模块详解以及翔实的参考资料。能够使科学知识图谱爱好者在最短的时间内高效地认识、理解以及使用CiteSpace绘制科学图谱,并有效地指导学习和科研实践。 本书可作为图书馆和情报学、医学和生物信息、公共管理、管理科学与工程(科技管理、信息管理)、教育信息以及数据或信息可视化研究方向本科生和研究生的实践教材,也可作为相关领域科研人员日常科学研究甚至科技管理和政策分析的工具书。
《Doris实时数据仓库理论与实战》系统地介绍了Doris的核心概念、架构原理和各项功能。全书共7章。第1章对Doris做了初步介绍。第2章重点介绍了Doris的数据表设计。第3章聚焦于Doris的数据导入。第4章介绍了Doris的数据导出和数据管理。第5章讨论了Doris中的数据更新和删除操作。第6章将读者带入Doris的进阶使用领域。第7章展示了Doris的生态扩展。通过《Doris实时数据仓库理论与实战》的学习,读者可以全面而深入地了解运用Doris构建高效、可扩展、实时数据仓库系统的方法,从理论到实践,从基础到进阶。 《Doris实时数据仓库理论与实战》适用于Doris开发人员和数据工程师,或有志从事数据仓库开发的技术人员。
本书的主要内容有:研究数据管理趋势,包括技术发展、法规要求和隐私问题。深?了解可拓展架构,学习各组件之间如何协同?作。探索数据治理和数据安全、主数据管理、?助式数据市场,以及元数据的重要性。
本书的主要内容有:熟悉Spark的编程模型和生态系统。学习数据科学的一般方法。检查分析大型公共数据集执行步骤的完整性。发现哪些机器学习工具对特定问题有帮助。探索可适应多种用途的代码。
本书介绍了 Kubernetes 部署大规模容器的复杂流程。只有精通每个网络层的抽象工具,才能在生产集群中高效地排查故障并维护集群。本书涵盖如下内容:Kubernetes网络模型。如何从CNCF CNI项目中选择最Z适合集群的接口。Kubernetes 背后的网络基础和Linux基础。如何快速排除网络问题并防止停机。AWS、Google Cloud和Microsoft Azure的云网络和Kubernetes服务。各种网络工具的利弊以及如何为你的技术栈选择最Z合适的工具。
本书全面介绍车辆轨迹数据的处理、分析与可视化方法,并深入探讨了基于Python的车辆轨迹数 据处理技术,旨在帮助读者快速掌握车辆时空轨迹数据处理的基本方法和编程技巧,同时提供丰富的实际案例和技术解决方案,覆盖了从数据采集到深入分析的完整技术链条,是交通时空大数据领域车辆轨迹数据处理分析的全面指南。 本书内容涵盖从车辆轨迹数据的基本特征、采集原理到预处理、质量分析、可视化,再到高级应用如路网匹配、排放计算、多智能体仿真,以及特定案例分析如电动汽车充电需求识别和无人机航拍轨迹数据分析。 本书适合计算机相关专业的学生、数据分析师、研究人员以及技术开发人员阅读。
XGBoost是一种经过行业验证的开源软件库,为快速高效地处理数十亿数据点提供了梯度提升框架。首先,本书在介绍机器学习和XGBoost在scikit-learn中的应用后,逐步深入梯度提升背后的理论知识。读者将学习决策树,并分析在机器学习环境中的装袋技术,同时学习拓展到XGBoost的超参数;并将从零开始构建梯度提升模型,将梯度提升扩展到大数据领域,同时通过计时器的使用了解速度限制。接着,本书重点探讨XGBoost的细节,着重于速度提升和通过数学推导导出参数。通过详细案例研究,读者将练习使用scikit-learn及原始的Python API构建和微调XGBoost分类器与回归器;并学习如何利用XGBoost的超参数来提高评分、纠正缺失值、缩放不平衡数据集,并微调备选基学习器。最后,读者将学习应用高级XGBoost技术,如构建非相关的集成模型、堆叠模型,并使用稀疏矩阵、定制转换器和
本书由浅入深,全面系统地介绍了Wireshark数据抓包和数据包分析。本书提供了大量实例,供读者实战演练Wireshark的各项功能。同时,对抓取的数据包按照协议层次,逐层讲解各个协议在数据包中的体现。这样,读者就可以掌握数据包抓取到信息获取的每个环节。 本书共分3篇。第1篇介绍Wireshark的各项功能,包括基础知识、Wireshark的定制、捕获过滤器和显示过滤器的使用、数据包的着色、导出和重组等;第2篇介绍基于Wireshark对TCP/IP协议族中常用协议的详细分析,如ARP、IP、UDP、TCP、HTTP、HTTPS和FTP等;第3篇介绍借助Wireshark分析操作系统启动过程中的网络通信情况。 本书涉及面广,内容包括工具使用、网络协议和应用。本书适合各类读者群体,如想全面学习Wireshark的初学者、网络管理员、渗透测试人员及网络安全专家等。对于网络数据分析人士,本书更是一本
编写本书的目的是使读者可以在最z短时间内掌握Excel 数据分析。本书以数据分析的整体流程和知识难易度来安排各章内容及其在全书中的次序,每一章内容都紧密围绕数据分析展开。全书共10 章,每天学习一章,10 天就能学会Excel 中的大多数数据分析工具的用法和技巧。 本书的主要内容包括数据分析的基本概念和流程、Excel 中的数据分析工具的功能和特点、导入外部数据和输入不同类型的数据、修复有问题的数据、设置数据格式、排序、筛选、分类汇总、数据透视表、公式和函数基础知识、提取和格式化文本、汇总和统计数据、计算日期、模拟分析、单变量求解、规划求解、分析工具库、图表的基本概念和基础操作、创建不同类型的图表、导入和刷新数据、使用Power Query 编辑器整理数据、使用Power Pivot 创建数据模型、创建计算列和度量值、销售分析和客户分析等
本书主要以项目实战为主线,从0到1的项目开发流程,教会读者如何开发全栈项目。它基于最新的Spring Boot3.1以上版本和Vue.js3.0版本的前后端分离项目开发,以及面向用户端的uni-app的小程序开发。本书基础的知识会在项目的开发过程中穿插讲解,不会单独的基础知识讲解,采用实战驱动学习知识的教学方法,并通过详细的代码示例、清晰的图解和源码解析帮助读者快速理解和掌握全栈项目开发的技巧和最佳项目实践。 本书共22章,包括Spring Boot篇、Vue篇和uni-app篇。Spring Boot篇(第1~14章)从环境搭建到项目上线,逐步深入讲解项目开发流程,并使用了众多企业级流行的开发技术,如Redis、Docker、Jenkins、Mybatis-plus等。Vue.js篇(第15~19章)使用Vue 3.0版本,采用开源的Vue.js框架Vue-Vben-Admin作为项目启动模板,帮助快速搭建后台管理系统,节约时间成本等。uni-app篇(第20~22章
K线图已经成为金融交易平台和图表程序的关键组成部分。使用这些图表,交易者们从中学习基础模式,用于解释价格走势历史,并预测未来市场。这本详细的指南向投资组合经理、量化分析师、策略师和分析师展示了如何使用Python来识别、扫描K线图模式,根据模式进行交易,并回测K线图模式的盈利能力。 金融作家、交易顾问和机构市场策略师Sofien Kaabar在本书中展示了如何创建K线图扫描器和指标,通过这些指标,我们可以比较不同模式的盈利能力。通过这本实践指南,你还将探索一种类似K线图的新型图表系统,以及从未介绍过的新模式。 通过这本书,你将学会: 创建并理解经典和现代K线图模式所需的条件。 学习这些模式背后的市场心理。 使用一个框架来学习如何进行交易策略的回测。 探索不同的图表系统并理解它们的局限性 在Python中导入不同时间框架的OHLC
本书从初学者易于理解的角度,以通俗易懂的语言、丰富的实例、简洁的图表、传统和现代数据特征的对比,将大数据这一计算机前沿科学如数家珍地娓娓道来。既介绍了大数据和相关的基础知识,又与具体应用有机结合起来,并借助可视化图表的画面感立体地为读者剖析了大数据的技术和原理,非常便于自学。本书内容包括大数据概论、大数据采集及预处理、大数据分析、大数据可视化、Hadoop概论、HDFS和Common概论、MapReduce概论、NoSQL技术介绍、Spark概论、云计算与大数据、大数据相关案例等内容。本书既可以作为想了解大数据技术和应用的初学者的教材,也适合作为培训中心、IT人员、企业策划和管理人员的参考书。
本书从读者熟悉的Excel出发,首先对数据的收集、整理、分析、多维透视进行了简要概述,接着引入了PowerBI,以实现对数据更精准的分析及可视化操作。全书共8章,内容包括如何使用Excel规范录入及整理数据源,如何使用函数、数据透视表及其他常见数据分析工具对数据进行加工,PowerQuery编辑器的应用、PowerBI数据建模、DAX公式的应用、报表的创建和编辑,以及可视化对象的数据交互等。在讲解过程中安排了大量的实操案例,以达到学以致用、举一反三的目的。本书结构合理,内容循序渐进、通俗易懂。本书适合Excel及PowerBI入门及进阶读者、数据分析新手阅读使用,同时可用作职业院校及培训机构相关专业的教材及参考书。
利用这本书,你将学习以下内容:了解如何选择Spark转换实现优化的解决方案。探索强大的转换和归约,包括reduceByKey()、combineByKey()和mapPartitions()。理解数据分区以实现优化查询。使用PySpark设计模式构建和应用模型。对图数据应用motif查找算法。使用GraphFrames API分析图数据。对临床医学和基因组数据应用PySpark算法。学习如何在ML算法中使用和应用特征工程。了解并使用实用的数据设计模式。
大数据时代,对数据进行统计、分析和学习变得尤为重要,并被应用在各方各面,如无人驾驶汽车、AlphaGo、机器学习和人工智能等,而统计思维也成为大数据时代的基本思维。不仅这些高科技以统计学为基础理论,大数据时代的每个人都应该懂点统计学,学会读懂并分析数据,学会让数据说话,让数据为自己服务。《大数据时代的统计学思维:让你从众多数据中找到真相》就是大数据时代统计学思维的科普书籍,全书共10章,第1章用几个有趣好玩的例子引导读者进入统计学的世界,并调动读者学习统计学的兴趣。第2~10章结合生活和工作中的例子全面介绍统计学原理和方法,涵盖统计学中的数据收集、数据处理和统计推断等内容,既有抽样调查、概率、相关性分析、回归分析等实用统计方法,也有大数定律和中心极限定理等基本统计学原理。用实例引导理论,通俗