本书系统地讲解了大模型技术、训练算法(包括强化学习、RLHF、GRPO、DPO、SFT与CoT蒸馏等)、 微调与对齐、效果优化及其实践。全书以大语言模型(LLM)为主线,绝大部分内容也适用于多模态大模型(VLM 和MLLM)。本书面向AI算法与工程领域的从业者、相关专业的学生,以及希望深入了解大模型技术、拥抱AI与大模型浪潮的跨行业读者。
本书主要利用AI发现和构建有效的量化策略,旨在使读者掌握AI在量化策略中的应用。随着2023年大模型的崛起,投资者需要学会与AI共生,建立个人知识库和灵活应用提示词工程(Prompt Engineering),让AI协助寻找论文、理解论文、编写代码、构建模型、训练模型、生成信号、特征识别、投资组合优化和参数优化等。AI在高质量人群的量化行业中将得到广泛应用和发展,让更多读者能掌握编程和量化技能,从而在AI的帮助下快速开发出适应市场的量化策略。 本书共10章,涵盖量化投资中AI的历史演进、投研平台的构建、量化策略的开发流程、策略分类和介绍、市场主流策略开发、策略回测和实盘准备等内容。书中提供丰富的示例代码,具有较强的实践性和系统性,并配有高等数学、金融工程和计算机科学技术等前置知识,以帮助读者深入理解量化投资策略。 本书适合量
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
《DeepSeek大模型高性能核心技术与多模态融合开发》深入剖析国产之光DeepSeek多模态大模型的核心技术,从高性能注意力机制切入,深入揭示DeepSeek的技术精髓与独特优势,详细阐述其在人工智能领域成功的技术秘诀。《DeepSeek大模型高性能核心技术与多模态融合开发》循序渐进地讲解深度学习注意力机制的演进,从经典的多头注意力(MHA)逐步深入DeepSeek的核心技术 多头潜在注意力(MLA)与混合专家模型(MoE)。此外,《DeepSeek大模型高性能核心技术与多模态融合开发》还将详细探讨DeepSeek中的多模态融合策略、技术及应用实例,为读者提供全面的理论指导与应用实践。《DeepSeek大模型高性能核心技术与多模态融合开发》配套所有示例源码、PPT课件、配图PDF文件与读者微信技术交流群。 《DeepSeek大模型高性能核心技术与多模态融合开发》共分15章,内容涵盖高性能注
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。
当智能工具成为我们日常生活不可或缺的一部分时,我们很容易忘记人类是如何迈入数字时代并一路走来的。然而,在历史上的一段时期内,聪明的人类却在创建由简单的0和1组成的字符串时遇到了众多极大的困难。《数字革命史》正是向这段历史致敬,没有这段历程,就没有我们今日智能手机、社交网络、互联网服务和人工智能的普及。这本书讲述了人类曾面临的最严峻的挑战,并呈现了现代新技术世界的奥秘。该书围绕五个主要章节带领读者畅游数字革命史之路,探究以惊人速度相继出现的数字技术并启发今天人工智能的新挑战。
ChatGPT 是目前市场上最为优秀的 AI 工具之一,它以强大的信息整合、知识链接、编程和语言理解等能力惊艳了全球,被广泛用于各行各业,以提高生产力。那么如此强大的 AI 工具该怎样使用呢? 《ChatGPT 实操应用大全(全视频 彩色版)》应运而生,这是一本关于 ChatGPT 全场景使用秘籍,为读者呈现 ChatGPT的 150种不同的使用方法和技巧,带读者深度解锁 ChatGPT的功能,释放出无限的创造力。它能够帮助用户轻松解决各种实际问题,极大地提高工作效率和生产力。不论是短视频内容创作、数据分析、日常办公、论文写作、金融投资,还是翻译、写代码等任务,本书都能够满足用户的需求。如果想要更好地利用 ChatGPT 功能,就阅读本书。本书主要涵盖 ChatGPT 的注册与登录、基本功能的使用、提示词用法、150 种应用场景、参数指令与 API 开发以及ChatGPT插件等内容,内容通
人工智能 (AI) 时代已悄然而至,然而对 AI 伦理学的研究却刚刚起步。与以往的技术革命不同,AI 有望在多个领域取代人类,但也有伤害人类的潜在风险。为防止对AI技术的滥用,我们在复杂性变得不可控之前,必须把糟糕的情况都预想到、分析到。 《人工智能伦理》从人工智能的关键内容(包括图灵测试、数据、知识、机器学习、自我意识等)出发,尽可能地用朴素的语言讲清楚复杂的概念,揭示出各种AI伦理问题以唤起读者的思考。本书基于大量真实数据,阐述了和平、合理发展 AI 技术的伦理思想,对 AI 技术可能引发的某些社会问题(如技术失业、两性平等)也做了剖析。
本书以通俗易懂的风格介绍了机器学习和深度学习技术,只涉及了基本的数学知识。本书由两位机器学习和深度学习领域的专家编写,书中的案例涵盖了银行、保险、电子商务、零售和医疗等多个行业。本书讲述如何在当今的智能设备和应用程序中使用机器学习和深度学习技术。本书提供了对书中涉及的数据集、代码和示例项目的下载。 l 机器学习和深度学习的概念 l 随机森林和提升方法 l Python编程与统计学基础 l 人工神经网络 l 回归与逻辑回归 l TensorFlow与Keras l 决策树 l 深度学习超参数 l 模型选择与交叉验证 l 卷积神经网络(CNN) l 聚类分析 l 循环神经网络(RNN)和长短期记忆网络(LSTM)
马文·明斯基认为,无论是人类的思维还是人工智能的思维,都是由原本简单的元素相连而组成,当这些元素组成一个整体时,就成为无限复杂的、我们称为思想和感情的东西。这些思想和感情可以转化为人类的体验。本书章节、段落之间的结构和明斯基的理论相呼应,翻过这一篇篇书页,关于思维的统一理论渐渐成型。本书妙趣横生,是想象空间里的一场历险。
一本将 AI 绘画讲透的探秘指南,通过丰富的实践案例操作,通俗易懂地讲述 AI 绘画的生成步骤,生动展现了 AI 绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI 绘画的诞生,引发了奇点降临,点亮了 AGI(通用人工智能),并涉及 Prompt、风格、技术细节、多模态交互、AIGC 等一系列详细讲解。让您轻松掌握生图技巧,创造出独特的艺术作品,书写属于自己的艺术时代。
工程师需要知道的机器学习和人工智能提供的实例和图示来自Prosise的AI和ML课程,这]课程受到了全球各地许多公司和研究所的青睐和欢迎。作者不涉及让人滑悚然和望而生畏的数学公式,目的只有一个那就 是面向工程师和软件开发人员,帮助他们迅速入门并通过案例迅速运用人工智能和机器学习来解决业务问题。本书讲帮助读者学会什么是机器学习和深度学习以及两者各有哪些用途;理解常用的深度学习算法的原理及其应用;学会标记和未标记数据,监督学习和非监督学习有何差异;通过scikit-learn和神经网络Keras和TensorFlow ,运用Python来进行机器学习建模;训练和评分地柜模型与-进制和多类粉类器模型 ;构建面检测和面识别模型以及 对象检测模型。本书适合硬件工程师与软件开发人员阅读和参考
本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于 回归事物本质,规律性、系统性地思考问题 理论为实践服务并且反过来充实理论,为更多人服务 的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。 全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的 到底是什么,为什么要这样做 的通俗理解。尽可能通过对应到日常生活中的现象来进行讲述。第2部分是机器学习模型、方法及本质,这一部分针对机器学习的方法论及具体的处理过程进行阐述。涉及数据准备、异常值的检测和处理、特征的处理、典型模型的介绍、代价函数、激活函数及模型性能评价等,是本书的核心内容。我们学习知识的主要目的是解决问题,特
识别关系是机器学习的基础。通过识别和分析数据中的关系,以图为核心的算法(如K-邻近或PageRank)显著提高了机器学习应用的效率。基于图的机器学习技术以全新方式为社交网络、欺诈检测、自然语言处理和推荐系统等领域的机器学习提供了强有力的支持。 《动手学图机器学习》是行业类的权威书籍,旨在倾授如何利用面向图的机器学习算法和工具,充分挖掘结构化和非结构化数据集中的自然关系,读者可以从中吸收图架构和图设计实践的精髓,并学会从容避开常见的陷阱。作者Alessandro Negro通过真实的应用示例,将GraphML(一种图建模语言)概念与实际任务完美联系起来,使读者能够更好地理解图技术在机器学习中的价值,并熟练应用该技术。 ● 大数据平台中的图 ● 推荐、自然语言处理、欺诈检测 ● 图算法 ● 与Neo4j图数据库协作
本书分类《机器学习导论》面向机器学习领域的主要模型和算法,重点阐述不同方法背后的基本假设以及它们之间的相关性,帮助读者建立机器学习的基础理论功底,为从事该领域的相关工作打下基础。具体内容包括机器学习研究的总体思路、发展历史与关键问题,线性模型,神经网络及深度学习,核方法,图模型,无监督学习,非参数模型,演化学习,强化学习,数值优化方法等。 本书可作为高等学校相关课程的教材,也可作为研究生及对机器学习感兴趣的科技、工程技术人员的参考用书。本书封面贴有清华大学出版社防伪标签,无标签者不得销售。
本书从数字图片开始讲起,介绍什么是数字图像。以halcon的安装,halcon的基础语法和数据结构起点,以图像的获取,图像的处理,图像匹配,区域的处理,区域的特征,亚像素轮廓特征,亚像素轮廓处理,数组操作为主要内容,*后结合实际案例,启发读者。内容包含理论讲解,和实际编程两个部分,理论讲解,说明图像处理原理,实际案例,实操算法,强化应用。使读者不仅可以明白原理,还能学以致用。内容讲解细致,没有编程基础的读者也能轻松入门。
本书的目的是考虑大型且具有挑战性的多阶段决策问题,这些问题原则上可以通过动态规划和*控制来解决,但它们的精确解决方案在计算上是难以处理的。本书讨论依赖于近似的解决方法,以产生具有足够性能的次优策略。这些方法统称为增强学习,也可以叫做近似动态规划和神经动态规划等。 本书的主题产生于*控制和人工智能思想的相互作用。本书的目的之一是探索这两个领域之间的共同边界,并架设一座具有任一领域背景的专业人士都可以访问的桥梁。
本书以实际操作为导向,用ChatGPT Midjourney Stable Diffusion来充分释放读者的想象力,展现视觉创意的无限可能性。本书详细讲解了基于ChatGPT、Midjourney、Stable Diffusion进行AI绘画的完整学习路线,包括提示词的提问、绘画技巧、图片生成、提示词编写、参数描述、模型训练等,同时搭配了丰富的实际操作案例。整本书内容全面、详尽且深入浅出,实用性很强。
本书以人工智能发展为时代背景,通过20个应用机器学习模型和算法的实际案例,为工程技术人员 提供较为详细的实战方案,以便深度学习。 在编排方式上,全书侧重对创新项目的过程进行介绍。分别从整体设计、系统流程和实现模块等角度 论述数据处理、模型训练和模型应用,并剖析模块的功能、使用和程序代码。为便于读者高效学习、快速掌 握人工智能开发方法,本书配套提供项目设计工程文档、程序代码、实现过程中出现的问题及解决方法等 资源,可供读者举一反三、二次开发。 本书结合系统设计、代码实现以及运行结果展示进行讲解,语言简洁,深入浅出,通俗易懂,不仅适合 作为对Python编程感兴趣的科研人员、人工智能爱好者及从事智能应用创新开发专业人员的参考教材, 也可作为高等院校全栈系统应用开发相关专业的参考书。
本书的目标是帮助读者全面、系统地学习机器学习所必须的数学知识。全书由8章组成,力求精准、最小地覆盖机器学习的数学知识。包括微积分,线性代数与矩阵论,*化方法,概率论,信息论,随机过程,以及图论。本书从机器学习的角度讲授这些数学知识,对它们在该领域的应用举例说明,使读者对某些抽象的数学知识和理论的实际应用有直观、具体的认识。 本书内容紧凑,结构清晰,深入浅出,讲解详细。可用作计算机、人工智能、电子工程、自动化、数学等相关专业的教材与教学参考书。对人工智能领域的工程技术人员与产品研发人员,本书也有很强的参考价值。对于广大数学与应用的数学爱好者,本书亦为适合自学的读本。
《Python机器学习项目实战》引领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。本书完全满足这三点! 本书展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关键概念。在学习本书的过程中,读者将会完成一些引人入胜的项目,比如使用线性回归预测汽车价格,部署客户流失预测服务等。读者将**算法,学习在无服务器系统上部署机器学习应用,以及使用Kubernetes和Kubeflow服务模型等重要技术。大家埋头苦学,亲自动手,享受掌握机器学习技能的乐趣! 主要内容 ●收集和清理训练模型的数据 ●使用流行的Python工具,包括NumPy、Scikit-Learn和TensorFlow ●将机器学习模型部署到生产环境中 阅读门槛 读者