數獨(NUMBER PLACE)約莫是誕生於西元四世紀中期的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9╳9的宮格數裡,同時還加入了「在3╳3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。
數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9╳9的宮格數裡,同時還加入了「在3╳3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一段時間、具有
數獨(Number Place)約莫是誕生於30年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」這種在所有直向、橫向、對角線的行列裡,依序填入1~n數字的益智遊戲。這種數獨遊戲刪除了其鼻祖的對角線規則,取而代之的是將宮格限定在9×9的宮格數裡,同時還加入了「在3×3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛越式的增進。 這本《麻辣數獨 嚴選超HOT 100題》是編者從該系列的「麻辣數獨」、「粉辣數獨」、「挑戰難題數獨」的7根辣椒的題目中,嚴選出100題的問題集。
數和(SUMCROSS)是結合加法與數獨規則的趣味遊戲,風行於歐美,並流傳至日本。每一區塊的直行上方、橫列左方都有提示數字,該直行或橫列的空格中,填入數字總和必須為提示數字,且同一排數字不能重複。有別於一般數獨總格數81格的玩法,數和的題目不限格數,難度愈高格數愈多,填入數字時不僅要思考是否和同行或同列數字重複,還要能讓同一排的數字總和符合規定,更添動腦樂趣。本書特色 像數獨又不是數獨,用加法與拆解觀念挑戰動腦功力。
數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。 這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9×9的宮格數裡,同時還加入了「在3×3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。 另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。 本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一
內容介紹 數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9╳9的宮格數裡,同時還加入了「在3╳3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一段時
數和(SUM CROSS)是結合加法與數獨規則的趣味遊戲,風行於歐美,並流傳至日本。每一區塊的直行上方、橫列左方都有提示數字,該直行或橫列的空格中,填入數字總和必須為提示數字,且同一排數字不能重複。有別於一般數獨總格數81格的玩法,數和的題目不限格數,難度愈高格數愈多,填入數字時不僅要思考是否和同行或同列數字重複,還要能讓同一排的數字總和符合規定,更添動腦樂趣。 本書特色 像數獨又不是數獨,用加法與拆解觀念挑戰動腦功力。
數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9╳9的宮格數裡,同時還加入了「在3╳3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。 本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一段時間、具有
內容簡介: 數獨(NUMBER PLACE)誕生於四百多年前的美國,它的鼻祖被稱為「Latinsquare(拉丁方陣)」或「magicsquare(魔術方陣)」,乃是一種在所有直向、橫向、對角線的行列裡,依序填入數字1~n的益智遊戲。現今的數獨遊戲除了延續前述的對角線規則之外,並將宮格數限定在9×9宮格裡,同時加入了「在3×3的格子裡各填入數字1~9,且不重複」的條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍性的進展。另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而沒有這項限制的歐美數獨遊戲,遂幾無對稱性可言,這項差異,或許也可說是源自於出題者審美觀的不同。本書收錄了比「麻辣數獨」更高難度的101道題目,只要確實掌握解題技巧並靈活運用,就可一一解開看似複雜、實則有跡可循的難題,也將更能體會到「麻辣數
數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。 這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9×9的宮格數裡,同時還加入了「在3×3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。 另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。 本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一
數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。 這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9×9的宮格數裡,同時還加入了「在3×3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。 另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。 本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一
數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。 這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9×9的宮格數裡,同時還加入了「在3×3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。 另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。 本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一段時間、具有
數獨(NUMBER PLACE)約莫是誕生於西元四世紀中期的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。 這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9╳9的宮格數裡,同時還加入了「在3╳3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨一段時
數獨(NUMBER PLACE)約莫是誕生於四百多年前的美國,它的鼻祖是被稱為「Latin square(拉丁方陣)」或「magic square(魔術方陣)」,這種在所有直向、橫向、對角線的行列裡,被依序填入1~n數字的益智遊戲。 這種數獨遊戲除了延續其鼻祖的對角線規則之外,取而代之的是將宮格限定在9╳9的宮格數裡,同時還加入了「在3╳3的格子裡各填入1~9其中一個數字,並且不重複」這項條件。根據這項劃時代的創意,數獨題目的變化性與遊戲的廣度都有了飛躍式的增進。 另外,在日本數獨遊戲中,數字對稱性的配置是一項不成文的規定,而在沒有這項限制的歐美數獨遊戲中,則幾乎是沒對稱性可言,這項差異或許也是因為製作者的審美觀不同而產生的。 本書為日本知名數獨大師西尾徹也編著而成,書中共收錄101道題目,其難易度皆為難的題型,很適合已玩數獨
打造台灣韓流出版*《TRENDY偶像誌》 區別坊間雜誌以當紅流行明星拼湊資訊即出版成冊,以獨家照片及報導全記錄與全追蹤並搭配獨家訊息成為韓國*明星、影視、音樂訊息報導,韓國*流行、旅遊資訊,建立韓國流行訊息*報導媒體。 TRENDY偶像誌22 2011年,繼續和TRENDY一同感受韓國偶像們的迷人魅力吧! 絕對驚喜連連的獨家報導,千萬不能錯過本期TRENDY! ★精彩內容大放送,本期特別加厚為96頁!! TRENDY偶像誌本期單元: COVER STORY CNBLUE的***曲