本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
2000年,美国马萨诸塞州剑桥的克莱基金会发起了一场颇具历史意义的竞赛: 任何能够解决七大数学难题之一的人,在专家认定其解答正确之后,都可以获得100万美元的奖金。对这七大问题的解答(或者解答不出)将对21世纪的数学研究产生巨大的影响。这些问题涉及纯粹数学和应用数学中大多数*迷人的领域: 从拓扑学和数论到粒子物理学、密码学、计算理论甚至飞机设计。著名的数学阐释者德夫林在本书中向我们讲了这七大难题的内容、由来以及它们对数学和科学的意义。
本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
《数学概念的演变》是一本由一位杰出的数学家所著的杰作,它提供了一个独特的视角来看待数学的发展和演变。与研究数学的历史或哲学不同,怀尔德把数学视为一种广泛的文化现象。他的研究揭示了数和长度等概念是如何受到历史和社会实践的影响的。从初步的概念开始,本研究探讨了数的早期演变、几何的演变以及实数中对无穷的征服。对演变的过程进行了详细的考察,并以对现代的演变的研究结束。 《作为文化体系的数学》不能被看成是一部纯粹研究数学历史的著作。数与几何的发展基本上体现了高等数学发展的所有特点。作者通过数与几何概念的演变,深刻地揭示数学作为一种文化现象,它的发展同时受到历史和社会实践的影响。作者首次引入人类学的方法而非专业数学的方法来研究数学的发生、发展和变化过程,得出了一些十分重要的结论,为理解
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
本书是一本简单的书也是一本复杂的书,是一本遥远的书也是一本亲近的书。在书中,作者为大家介绍了10位来自不同地区的数学先驱的生平事迹与他们的伟大成就。也许其中介绍的一些数学问题你并不了解,也许里面的一些专业术语你并不熟悉,但是这并不会妨碍你对他们伟大人格的理解,也不妨碍你从他们身上了解到一些投身科学的精神。希望每个人都能从这本书中得到一定的启发,也相信通过作者的生动描述会让大家对看似枯燥的数学有一个崭新的认识。
《1 1不总等于2》是一门令人惊叹的数学课! 1 1=2,这可太简单了,谁不会啊! 那么,一个苹果加一个梨等于多少呢?是两个什么? 数学在物理学、工程学、天文学方面都有着举足轻重的地位,万物逻辑始于1 1,宇宙的尽头是1 1。搞懂数学的底层逻辑,你会发现,数学和物理原来是这么回事! 原始人类能否理解 1 1=2 这个我们现在看来如此简单的算式呢? 薛定谔的猫 在二进制里有着怎样的解释? 数学到底是一种发现还是一种发明?
库尔特 哥德尔是一个智慧巨人。他的不完全性定理不仅改变了数学,而且改变了整个科学世界和建筑于此定理之上的哲学。哥德尔定理粉碎了逻辑最终将使我们理解整个世界的梦想,同时也引发了许多富有挑战性的问题:什么是理性思维的界限?我们能够完全理解我们自己造的机器吗?我们能够搞清楚我们心智的内在工作过程吗?当研究结果缺乏逻辑的确定性时,数学家还怎么继续工作?在这本书里,我们最终遇到了置身于这些深邃思想背后的那个人。约翰 L.卡斯蒂和维尔纳 德波利为我们描述了一个复杂的人物:既入世又遁世,既雄心勃勃又固执己见。 正像卡斯蒂和德波利所明断的那样,哥德尔的影响是持久不衰的。他的工作不仅使数学发生革命性的变化,而且波及哲学、语言学和计算机科学,甚至还包括宇宙学。
癌症、疑难慢性病如何治疗和康复?本书作者通过自身的经历,对治疗“ 症”提出了一些新思路、新理念和新方法。倡导文化的医学功能,是本书的主题,也是作者三十余年与癌症和平共处的经验总结。文化的力量,比我们想象的强大。
大数据时代,人们在生产生活中收集了大量的高维复杂数据。在针对这些数据进行统计分析的过程中,构建一个简单高效的模型至关重要。一个简单的稀疏模型不仅具有很好的解释性,常常也具有很高的性能。本书的主要工作就是针对高维数据的稀疏统计建模研究。
《作为文化体系的数学》站在文化人类学的立场,描述了数学的性质以及数学与社会的联系。认为数学是一般文化的子文化,它的现状和发展受到文化的影响。把文化系统的各个成分当成一种向量,这在文化人类学当中是一种创新, 有助于更加清晰地分析和理解支配数学学科发展的力量。在关于数学的人类学方面,怀尔德一共写了两部著作,*部著作是《数学概念的演变》,本书是第二部。《作为文化体系的数学》是对《数学概念的演变》所涉及内容的进一步精致处理,作者明确提出数学是一个文化体系,他充分借助数学史研究的已有成果,同时又运用文化学的视角和方法审视一些重要的数学历史现象, 获得了一些十分重要的结论。把数学视为一个文化体系,不仅有助于理解现代人文数学哲学观,而且能较好地解释至今为止哲学或心理学无法解释的数学历史现象。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
首先,本书从 r期状态随机概率转换矩阵 的数据,得到了 单期状态随机概率转换矩阵 的分析解,从而解决了由于时间跨度r存在而不能使用传统模型方法的问题。其次,本书对二维随机概率转换矩阵的开方进行了详细的分析,得到了矩阵开方可能存在 *性 和 存在性 的很多细节结果。*后,通过对间接估计量和直接估计量的比较,从理论推导和数值模拟两个角度得到了与一般直觉不一致的结论。
朋友们,85×85=?你能瞬间算出这道数学题的答案吗?学习了本书所教授的印度吠陀数学的计算方法,2秒钟就可以给出答案。也许你会惊讶,“这是数学还是魔术?”但是,真的就有这么神奇! 印度吠陀数学的创始人巴拉蒂?克里希纳?第勒塔季在1911~1918年期间潜心研究印度古代吠陀经文,在此基础上重构了数学计算体系,并将其传播到世界各地。吠陀数学比一般的计算方法快10~15倍,其结构连贯、完美、准确且容易计算。理解了吠陀数学法则,便可以创造出自己的解题方法,也可将其运用于现代数学——代数、几何、三角函数、微积分等科目中。本书是以两位数的运算为例来阐述的,可谓是吠陀数学的入门篇。每天花十分钟做练习题,并把这些简单又神奇的法则熟记于心,这会成为以后进行熟练运算的基础。也会使你成为酷的数学达人!
中华古算中蕴含着中华先贤的大智慧。本书探究其中为神奇的几个热点问题,合称 中华神算 。 发明二进制的Leibniz曾明确指出,古代中国的伏羲把握着二进制方法的 宝钥 。本书第1卷(正本清源二进制)阐明了Leibniz这一论断的合理性与正确性。第二卷(超算通行二分法)说明了 伏羲宝钥 诱导生成的二分演化技术,对超级计算机的高效算法设计具有一定的启迪和指导意义。 刘徽是中国数学史上伟大的数学家。本书第三卷(逼近加速割圆术)介绍了刘徽的割圆术,其中的极限思想和逼近加速技术是中华先贤前瞻性思维的一个明证,对当代的数值计算软件的设计具有很高的指导意义。第四卷(测高望远重差术)破解了刘徽的重差术,展现了一种被称为 刘徽勾股 的新的几何学体系。这一体系与欧几里得公理化体系迥然不同,它回避了平行线的纠缠,摒弃了角度测