本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
量子计算是一个多学科领域。 本书致力于利用一些 量子力学奇妙的方面扩大我们的计算视野。通过介绍面向计算机科学领域的量子计算, 本书将带领读者浏览这个引人入胜的尖端研究领域。本书以一种通俗易懂但又严谨的方式,采用了每个计算机科学的学者和学生都熟悉的方法和技术。读者无需具有任何高等数学或物理背景。前四章介绍的背景知识,包括复数,复向量空间,从经典计算到量子计算的飞跃, 和基础量子理论。在随后的七章,作者分别从计算机科学的特定角度来描述量子计算的不同方面,比如:计算机体系结构, 算法,编程语言,理论计算机科学,密码学,信息理论和硬件。本书为计算机科学专业的学生和研究人员提供循序渐进的示例,两百多个练习和相应的答案,以及应用量子计算思想的编程练习。
本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
《物理学的进化》是著名科学家、物理学奠基,主要介绍物理学观念从伽利加略牛顿时代的经典理论发展到现代的场论、相对论和量子论的演变情况。其中选择了几个主要的转折点来阐明经典物理学的命运和现代物理学中建立新观念的动机,从而指引读者怎样运河找寻观念世界和现象世界的联系。《物理学的进化》问世后,物理学有了空前的发展,不过这《物理学的进化》只是讨论物理学的重要观念,它们在本质上并没有变化,仍然适合读者阅读。
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。
高等数学典型例题与解法分上、下册出版。下册内容包括:多元微积分及其应用、无穷级数、常微分方程、应试模拟。每章分基本要求、内容提要、典型例题与方法、综合应用与提高、同步练习与综合练习、单元测试A、B卷。本书力求:对大纲要求有适合性,例题解法有典型性,练习题有代表性,对本科生练习和应试有有效性(考研生亦如此)。本科生、考研生分别使用同步、综合练习与单元测试A、B卷、模拟试卷。适合于理工科、财经管理学科等本科生学习与考研复习使用。
本书的宗旨是帮助读者全面、系统地复习高等数学的内容,深入理解基本概念和基本理论,学习和掌握解题方法及解题技巧;追求的目标是通过对解题方法和技巧的分析,使读者能举一反三、触类旁通。本书每章均有一些读者想掌握、易掌握但尚未掌握或根本上不知道的方法和技巧,例如,一些类型的极限的教求法;有关微积分中值定理命题的证明;定积分、重积分的有关命题的证明;不等式的证明;无穷级数求和的方法;常微分方程中积分因子的求法等,均介绍了读者见所未见的新方法和新技巧。按当前考试特点及命题的发展趋势修订的本书,将更适合广大读者,尤其是考研应试者的需要。本书可作为本科生、大专生、电大、夜大、职大生的参考书,也可作为青年教师和科技工作者的参考书。
本书是国家医药管理局科教司、普通高等学校药学类专科教材建设委员会组织编写的统 编教材。 本书主要内容包括:函数与极限、导数与微分、导数的应用、不定积分、定积分、定积分的应用、微分方程、多元函数微分学以及二重积分。书后附有常用的初等数学公式、希腊字母表、不定积分表、拉氏变换简表、平面与空间图形和二阶、三阶行列式的计算、习题答案及主要参考书目。为便于学生复习、自检,附在每节后留有练习题外,还在一些章后安排了自测题。 本书可供普通高等学校药学类专科师生使用。
《高等代数选讲》是编者刘丽在多年从事“高等代数”及“高等代数选讲”教学的基础上编写的一本辅导材料。全书共分11章,内容包括行列式、矩阵、n维向量、线性方程组、多项式、相似矩阵、二次型、线性空间、线性变换、欧几里得空间、λ-矩阵等。每章内容均按教学要求、知识要点、典型例题、同步练习及参考答案5部分编写。在编写时,力求对内容进行概括性阐述,对例题进行分类讲解,对一些典型例题或具体的解题方法,多加以分析或评注;内容及例题安排上,由浅入深,便于教师教学和学生自学。本书可作为数学类专业硕士研究生入学考试教材或复习指导书,也可作为理工科、经济管理类学生学习“高等代数”与“线性代数”的参考书,同时还可供教授“高等代数”与“线性代数”的教师参考。
刘吉佑、赵新超、陈秀卿、钱江编写的《高等数学解题法》目的是为读者学习高等数学、提高解题技能和熟练程度提供帮助。全书收录的题目比较典型,也有难度,总共归结为二十九讲。内容包括预备知识、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程等。每一讲分为内容要点、例题选讲、练习题和答案与提示四个模块。例题选讲给出了比较详细的解答或证明,而练习题则只给出答案或提示,以便给读者留有充分的发挥空间。对于一些特别需要引起读者重视的解题方法或解题思路,书中加以“评注”。本书内容覆盖了理工科大学高等数学课程的基本要求和国家研究生数学入学考试的基本要求。《高等数学解题法》可作为“高等数学解题法”课程的教材和学生学习高等数学的参考书,也可作为参加硕士研
《世界塑料钞鉴赏》图录的塑料钞除少数几张外,其余为编者的藏品。书中展示了迄今世界上已发行塑料钞的40多个国家和地区的各种塑料钞,同时附有该国(地区)的简况[包括中英文国(地区)名、地理位置、面积、人口、首都、货币名称、国际货币符号()等资料],并对每张塑料钞的种类、面值、发行年份、尺寸和钞票的正背面图案等给以力求详尽的注释。
数学公式定理手册(概率统计)基础知识重点难点点拨规律技巧方法完全依照课程教学要求进行编写,汇集经典版本的精华,囊括了《概率统计》中所有概念、公式、定理、解题方法以及在使用时要注意的问题,并精选典型例题帮助理解和记忆。灵活运用图表、网络图等形式使知识更加条理化、清晰化。名师点拨重点难点,举重若轻,化难为易。规律方法科学实用,能让读者举一反三,触类旁通。
本书是一本实用的全球定位系统?(GPS)定位程序设计工具书。它包括了GPS应用和开发中全部常用的内容。????全书共分十章,它们是:绪论、数据采集和格式转换、卫星位置计算、定位、相对定位、差分GPS定位、动态定位、辅助计算工具、GPSGLONASS组合以及菜单界面设计。本书总结了多年的工作实践和研究成果,以38种不同功能的数学模型及完整的源程序奉献给读者。????本书可供从事航空、航