每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
为适应2l世纪对高等职业技术应用型人才的新要求,提升高等数学在技能和职业指导中作用,我们编写了这本具有高职特色的高等数学教材。 本书作为*高等职业教育基础课规划教材之一,创新点在于把学法融入读本中,把培养学生的职业精神和职业意识写进了数学教材中,突显每章节的技术性内容。 本书包括一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、向量与空间解析几何、几何级数、常微分方程、数学建模、数学软件Mathematica九个知识模块,全部学完学时不少于120学时。前二个知识模块学完后,就可以根据专业选择所需数学知识模块。本书注重对综合知识的应用,突出一定升学应试能力,对参加“专升本”考试具有一定指导意义。 本书可作为高职高专理工类和财经类各专业的通用教材,也可作为其他各专业的参考资料,
本书分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、二重积分和三重积分、曲线积分与曲面积分、空间解析几何、级数、微分方程等九个专题,每个专题又含 基本概念和内容提要 竞赛题解析 练习题 三个部分。书中竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。另外,从近几年的硕士研究生入学考试试题中也挑选了部分好题,丰富了本书的内涵。
本书是贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”的要求精神,按照国家非数学类专业数学基础课程教学指导委员会*提出的“丁科类本科数学基础课程教学基本要求”,并根据高等学校培养高级应用型人才的目标编写而成的。全书分为上、下两册。上册分七章,内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程。下册分五章,内容包括空间解析几何与向量代数、多元函数微分及其应用、重积分、曲线积分与曲面积分和无穷级数。 本书在内容上力求适用、够用、简明、通俗;在例题选择上力求全面、典型,难度循序渐进;在论述形式上则力求详尽、易懂。每节后都附有比较全面的基础性习题与综合性习题。为满足读者进行阶段性复习与自我检测的需要,在每一章末安排有自测题。书后附有
本书是高职高专各专业通用的高等数学基础课程教材。全书共分12章,包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、空间解析几何与向量代数、多元函数的微分学、多元函数的积分学、无穷级数、数学软件等内容。书中每章都有学习目标和小结,每节都配有习题,每章都配有复习题,书后附有习题和复习题答案。本书中有“*”的部分内容供教师选用。 本书坚持“以应用为目的,以必需够用为度”的原则,在不破坏数学内容系统的前提下,充分考虑到高职高专教育特点和目前的教学实际,由浅人深、循序渐进,删除了许多繁琐的理论推导和证明,从而使本书显得更通俗易懂,简明扼要。
高等数学是理工科院校的一门重要的基础课。我们依据理工科各专业的培养目标和特点,按照**制定的高等数学课程教学大纲的要求,为帮助读者在数学概念、计算技能和数学思维方面得到充分的训练,编写了这本参考书。 本书是按照同济大学应用数学系所编的《高等数学》(第五版)的章节顺序编写,共12章,每章分2个部分: (1)重点、难点全析:对本章的重点与难点进行归纳总结;同时归纳重要的概念、内容与公式。 (2)习题全解:对同济大学数学教研室编写的《高等数学》的第五版和第四版的课后习题做了详细解答,以便读者掌握解题技巧,并从中掌握好基本概念。
本书遵循*高等院校非数学类专业数学基础教学指导分委会修订的“工科类本科数学基础课程教学基本要求”,传承高等数学的结构体系,体现新形势下教材改革的精神,面向普通高校人才培养的需要,集作者多年教学实践的经验编写而成。本套书分上、下两册,上册内容为一元函数微积分和空间解析几何与向量代数(共7章),下册内容为多元函数微积分、级数和常微分方程(共5章)。书末附有习题参考答案。 本书可作为高等院校工学、经济学等专业的教材,也可作为相关教师、工程技术人员用书和参考书。
本书依据*《高等数学课程教学基本要求》(经管、文科类)编写,可满足经管、文科类本科各专业对高等数学的教学需求。 本书分上、下两册出版,上册包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用等内容,打8号的内容可根据不同专业选学,书末附有积分表,习题答案与提示。 本教材强调从实际应用的需要(实例)出发,加强数学思想和数学概念与社会经济实际问题的结合,淡化了深奥的数学理论,强化了几何说明,结构简练、合理。每章都有本章小结、复习题和自测题。此外,本书还配有辅导教材《高等数学学习指导与习题解答》(经管、文科类)。 本教材可供高等院校经管、文科类本科专业的学生学习使用,也可供高校教师和科技工作者使用。
本书是根据“高等数学课程教学基本要求”,结合编者多年从事高等数学教学积累的经验编写丽成的。全书分为上、下两册。上册研究一元函数的微积分,主要包括函数的极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用以及常微分方程。下册研究多元函数,主要包括向量代数与空间解析几何、多元函数的微分学、重积分、曲线积分和曲面积分、无穷级数以及数学实验。本书叙述直观,概念清晰,通俗易懂,便于学生理解和掌握,合理配置了适量的例题和习题,应用问题贴近生活实际,基本涵盖了工科类本科“高等数学”课程基本要求的内容,读者可根据具体情况适当取舍。 本书可作为高等工科院校的“高等数学”课程教材,也可供相关教师、工程技术人员参考。
本书是根据《高职高专教育高等数学课程教学基本要求》的精神,本着“必需、够用”的原则而编写的。本书注重基本概念和基本方法,适当增加了解决实际问题的例子,以培养学生用数学原理和方法解决问题的能力。此外,本书还淡化了理论上的严密性,强化了几何说明,这样更显直观,降低了学生学习高等数学的难度。 全书内容包括函数与极限、导数与微分、导数的应用、不定积分、定积分、定积分的应用、常微分方程、多元函数微分学、二重积分、级数、拉普拉斯变换、矩阵及其应用和概率论初步。书后附有初等数学常用公式、常用平面曲线及其方程、习题参考答案。 本书可作为高职高专高等数学课程的通用教材。
高等数学 是大学教育的一门重要基础课程。 为了方便学生迅速而全面地掌握和巩固本课程的基本 概念和基本解题方法,为有能力进一步深入学习的学 生提供帮助,同时也为方便教师布置、收发作业,陈 永强、张华编写了《高等数学习题册》。本习题册与 同济大学数学系编写的《高等数学》第七版相配套, 本书分上、下两册出版。上册内容包括:一元函数微 分学、一元函数积分学、微分方程。下册内容包括: 空间解析几何与向量代数、多元函数微分学、重积分 、曲线积分、曲面积分和无穷级数。 本习题册适用于各类普通高等院校及相关专业( 非数学专业)的在校学生。希望本习题册能够为大学 生掌握 高等数学 课程的知识提供一条有效的途径 。
《大学文科数学》结合编者多年的教学实践和研究,充分吸收国内外教学改革成果,经反复锤炼而成的。全书内容包括微分学(包括极限与函数、导数与微分、中值定理及导数的应用)、积分学(包括不定积分、定积分及其应用)、线性代数初步、概率统计初步(概率论初步、数理统计初步)等内容,每节配有习题,每章配有单元练习题,每章之后配有问题思考与讨论、阅读与欣赏,书末附有习题参考答案。 《大学文科数学》可作为高等院校文科各专业教材或教学参考书,教师可根据教学对象和开设课时的不同灵活选择教学内容。
《高等数学》是根据“高等数学课程教学基本要求”,结合编者多年从事高等数学教学积累的经验编写而成的。全书分为上、下两册。上册研究一元函数的微积分,主要包括函数的极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用以及常微分方程。下册研究多元函数,主要包括向量代数与空间解析几何、多元函数的微分学、重积分、曲线积分和曲面积分、无穷级数以及数学实验。《高等数学(下册)》叙述直观,概念清晰,通俗易懂,便于学生理解和掌握,合理配置了适量的例题和习题,应用问题贴近生活实际,基本涵盖了工科类本科“高等数学”课程基本要求的内容,读者可根据具体情况适当取舍。 《高等数学(下册)》可作为高等工科院校的“高等数学”课程教材,也可供相关教师、工程技术人员参考。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
《大学数学实验》是普通高等教育“十二五”规划教材之一,是与刘春风、何亚丽、肖继先等主编的《高等数学》、《线性代数》、《概率论与数理统计》等教材配套的mathematica实验教材。本书共六章,主要包括mathematica软件介绍、高等数学实验、线性代数实验、概率论与数理统计实验等基本内容,此外还适当增加了数值计算方法实验和应用案例,为学生进一步使用mathematica解决问题奠定了基础。 《大学数学实验》以基本知识为背景,以数学问题为载体,以mathematica数学软件为工具,将数学知识、数学建模与计算机应用三者有机的结合起来,旨在培养学生应用数学知识解决实际问题的意识和能力。 《大学数学实验》可作为大学一、二年级开设的“大学数学实验”课程的配套教材及“数学建模”课程及其相关培训的辅助教材,也可供工程技术人员参考。
本书是《高等数学》(上、下册)(刘春风主编,科学出版社,2008年)的配套学习指导教材。本书分上、下两册,上册内容为一元函数微积分和空间解析几何与向量代数(共七章),下册内容为多元函数微积分、级数和常微分方程(共五章)。书末附有《高等数学》考研大纲、Math—ematica简介和自测题答案与提示。 本书结构严谨、逻辑清晰;强调方法阐述、力求通俗易懂、由浅人深、富于启发、宜于自学;其中适度嵌入了与“高等数学”相关的数学实验,旨在提高读者应用“高等数学”解决实际问题的能力。 本书可作为高等工科院校工学、经济学等各专业“高等数学”的辅导教材,也可作为相关教师、工程技术人员用书和参考书。
本书根据国家示范性高职院校建筑类专业的教学要求编写而成,体现了“必需、够用为度”的原则,内容包括三角函数、一元函数微积分、矩阵和线性方程组以及概率统计初步。 本书可供三年制高职高专建筑类专业使用,也可供其他专业选用。