每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
本丛书是献给从出生到学龄前儿童和家长的一份特别的礼物,没有什么比自己的孩子聪明伶俐更让父母们感到骄傲和自信的了,这份精美的礼物将会伴随你教会孩子认物、识字、算术,直到能够讲述有趣的故事。 当你陪着咿呀学语的宝贝翻开这本书的时候,一颗年幼的心灵不开始受到知识的洗礼和审美的陶冶。 当你的宝贝指给你看认识的个字的时候,你的笑容一定像久违的春天温暖的阳光那样明媚而灿烂。 当你的宝贝绘声绘色地讲完一个童话故事的时候,你的心情一定像晴朗的夜空那样饱满而又深藏着无数希望的星星。 当你把这套书带回家的时候,一个成长的故事就开始了…… 让这套书带来快乐的成长,让我们也来分享这成长的快乐……
《高等数学:经管类(上册)(第2版)》是在贯彻、落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求的基础上,按照“经济管理类本科数学基础课程教学基本要求”,为适应21世纪教学改革的需要与市场经济对人才的需求,在第1版的基础上,结合多数本专科院校学生基础和教学特点进行编写的,是面向21世纪的课程教材。全书分上、下两册出版。上册内容包括函数、极限与连续,导数与微分,中值定理与导数应用。不定积分,定积分及其应用和广义积分;下册内容包括向量代数与空间解析几何,多元函数微分学及其应用,多元函数积分学,无穷级数,常微分方程。各节后均配有相应的习题,书末附参考答案。 本教材结构严谨、知识系统、讲解透彻、难度适宜、通俗易懂、适应面宽。适合作为普通高等院校经济管理类有关专业的高等数学课程的
本书是与全国使用多的*版高等数学教材《高等数学(下册)》(第五版,同济大学应用数学系主编,高等教育出2002年7月出版)配套的教学参考书。本书既可作为高校师生教、学《高等数学(下册)》的参考书,也可作为习作课的教材,还可作为期中、期末备考及“考研”、“竞赛”的复习辅导书。 为了便于读者自学,本书编排体系基本上与主教材的章、节顺序一致(详见目录),原则上以节为单位编写,对内容少或容易学习的节适当合并为“讲”。全书含各章习作课、期末复习课共36讲,每讲2(或4)学时,共需80至90学时教完,余下的机动学时,可讲打“*”号的节或作为测试时间和加强习作课。各节(讲)包括主要公式、答疑辅导、考题(考研题和竞赛题)解析(解与分析)、教与学建议、补充与说明及习题提示等栏目;各章末都安排了一次习作课’含内容
《高等数学》编者(王升瑞、朱开永、朱金艳、孙玉虎)根据多年的教学经验,本着紧扣人才培养对创新意识、逻辑思维能力和素质的要求;恰当科学区分和准确定位不同学科、不同层次人才培养对数学知识的需求后,编写了这本富有特色的针对普通高校文科、职业技术教育和成人教育学生教学用的“高等数学”教材。 《高等数学》在复习有关的初等数学知识的基础上,编写了函数与极限、一元函数微分学、一元函数积分学、多元函数微分学和二重积分共五章内容。对书中的习题和自测题都配有答案。《高等数学》取材少而精,文字叙述通俗易懂;论述确切,条理清晰;由浅入深,循序渐进;例题较多,典型性强;深广度恰当,注重学生分析问题和运算能力的培养,非常便于教与学。
朱开永、王升瑞主编的《高等数学(上)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为上册。内容包含了函数与极限、一元函数微分学以及一元函数积分学。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,必须够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以作为高等工程技术教育、成人教育的本科教材
本书根据国家示范性高职院校建筑类专业的教学要求编写而成,体现了“必需、够用为度”的原则,内容包括三角函数、一元函数微积分、矩阵和线性方程组以及概率统计初步。 本书可供三年制高职高专建筑类专业使用,也可供其他专业选用。
本书是学习高等数学课程的一本很好的辅导书。本书与同济大学《高等数学》第六版同步,下册内容包括空间解析几何与向量代数、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数。本书的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习本书,将完全掌握高等数学的思想与方法。本书还附有历年研究生入学考试题的分析解答,对读者考研复习与把握考研方向非常有益。欢迎读者选用本书与本系列丛书。
高等数学是高等院校的一门重要基础课,也是全国工学硕士研究生入学考试的必考科目之一。由于受课时的限制,该课程无论在内容的广度、深度上还是在解题方法上,均不可能全面展开讲解。为了帮助一些学有余力的学生提高数学水平,我们编写了《高等数学考研冲刺》一书。 本书包括两大部分:部分共十二章,是按同济大学版《高等数学》的知识系统编写的。每章结合典型例题,对该章的基本题型和解题方法进行了较为全面的讨论,对难度较大的题型,做出了思维定式处理,目的是为了使大家在较短时间内加深对数学的理解、掌握解题技巧、提高解题能力。每章均配有练习题和答案,供大家自我检测。第二部分是附录。附录给出了十二、十三、十四届北京市大学生问E数学专业)数学竞赛本科甲、乙组试题及解析和2002~2004年考研数学——高数部分试题及答
《高等数学(理工类第3版)》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,并结合当前大多数本科院校学生基础和教学特点进行编写的。全书分上下两册。上册分4章,内容包括函数、极限与连续,一元函数微分学,一元函数积分学,向量代数与空间解析几何;附录包括二阶和三阶行列式简介,常用曲线方程与图像,积分表,数学建模,数学实验。下册分4章,内容包括多元函数微分学、积分学,无穷级数和微分方程,附录包括数学建模与数学实验,每册书后附有习题答案与提示。本书是其中的《高等数学(理工类下第3版)》,由杨海涛主编。 《高等数学(理工类下第3版)》知识系统、体系结构清晰、详略得
为适应2l世纪对高等职业技术应用型人才的新要求,提升高等数学在技能和职业指导中作用,我们编写了这本具有高职特色的高等数学教材。 本书作为*高等职业教育基础课规划教材之一,创新点在于把学法融入读本中,把培养学生的职业精神和职业意识写进了数学教材中,突显每章节的技术性内容。 本书包括一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、向量与空间解析几何、几何级数、常微分方程、数学建模、数学软件Mathematica九个知识模块,全部学完学时不少于120学时。前二个知识模块学完后,就可以根据专业选择所需数学知识模块。本书注重对综合知识的应用,突出一定升学应试能力,对参加“专升本”考试具有一定指导意义。 本书可作为高职高专理工类和财经类各专业的通用教材,也可作为其他各专业的参考资料,
本书是普通高等教育精品规划教材。该书作为高等理工科院校本科生高等数学课程的辅导书,其内容(除了傅氏级数之外)基本上包含了大学本科的高等数学内容,并且各部分的内容(除级数部分)均以计算解答题为主。 全书内容全面,重点突出,共分为24个专题讲解。 本书适合于一般本科院校和高职高专院校学生学习高等数学课程参考,对于初学高等数学课程作练习题有困难的学生有所帮助。
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
本书是高职高专各专业通用的高等数学基础课程教材。全书共分12章,包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、空间解析几何与向量代数、多元函数的微分学、多元函数的积分学、无穷级数、数学软件等内容。书中每章都有学习目标和小结,每节都配有习题,每章都配有复习题,书后附有习题和复习题答案。本书中有“*”的部分内容供教师选用。 本书坚持“以应用为目的,以必需够用为度”的原则,在不破坏数学内容系统的前提下,充分考虑到高职高专教育特点和目前的教学实际,由浅人深、循序渐进,删除了许多繁琐的理论推导和证明,从而使本书显得更通俗易懂,简明扼要。
本书是*高等职业教育基础课规划教材之一,是作者在经过多年教学实践并吸收我国“十五”期间高职高专工科类高等数学教改成果的基础上编写而成的。主要内容包括数学软件包MATIAB、函数、极限与连续、导数与微分、一元函数微分学应用、不定积分、定积分及其应用。 本书可作为高职高专院校工科类各专业通用高等数学教材,也可作为工程技术人员更新高等数学知识的自学用书。
本书是与天津大学出版社版、由相同作者主编的《高等数学》(下册)配套的辅导教材。内容包括多元函数微分学,重积分、曲线积分及曲面积分、无穷级数和微分方程等5章的全部习题的解答过程及答案。每章后配有复习题及自我测试题。复习题随题给出了解答过程及答案,自我测试题的解答进程及答案在书后统一给出。书末还附有积分表。 本书适合全日制普通高等学校及远程高等教育、高等职业教育,成人高等教育的本科学生使用,也适合自学。