本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书按照*制定的 工科类本科数学基础课程教学基本要求 编写,全书分为上下两册,共12章。内容 少而精 ,取材更加紧扣 基本要求 ,对于某些超出 基本要求 ,而属于教学中可讲或可不讲的内容,即使编入也均以﹡号标记或用小号字排版,以供不同专业选用或参考。 书中每节后配有适量的习题,每章之末均有自测试题。为方便读者查阅参考,在所附习题或复习题之后,都接着附有答案或提示。
《高等数学(第2版)(套装上下册)》是以*高等工科数学课程教学指导委员会制定的《高等数学课程教学基本要求》为标准,以培养学生的专业素质为目的,充分吸收编者们多年来教学实践与教学改革成果编写而成的。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》分为上、下册.上册含函数与极限、导数与微分、微分中值定理与导数应用、不定积分、定积分及其应用、微分方程等内容,下册含向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、无穷级数等内容.每节均配有习题,每章配有综合练习题,书末附有习题参考答案,便于教与学。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》可供高等本专科院校工科各专业使用,也可供其他专业参考。
本书是《高等数学》教材的同步辅导书.高等数学的概念、公式、定理较抽象难懂,解题方法也多样化,难以掌握,针对这个现状,我们编写了本书. 全书分上、下两册,共l3章,以小节为单位编写.每章开篇有“本章知识体系”,包括三个板块:知识要点,重点、难点解析及典型例题和练习题.“本章知识体系”部分概述了每章的主要内容;“知识要点”部分归纳总结了每小节的主要内容,包括基本概念、性质、定理、公式及基本解题方法等;“重点、难点解析及典型例题”部分对那些重点、难点及易混淆的知识点进行了详细诠释,并精选典型例题进行分析讲解;“练习题”部分分为A,B两级,习题A主要用于培养学生对基础知识的掌握能力,习题8用于巩固提高.另外,每章配有“本章自测题”,可用于学生进行自我测试. 本书可作为理工科院校“高等
高等数学是工科类各专业的重要基础课程,也是硕士研究生入学考试的重点科目,其重要性日益凸显,《高等数学辅导》由*考试中心数学阅卷组长张天德老师精心编写。 本书为高等数学(同济七版)的同步辅导全书,分为教材知识全解和教材习题全解两部分: 【教材知识全解】 本节知识结构图解 将每一章、节必须掌握的概念、性质和公式进行了归纳,并以图表的形式给出; 重点及常考点分析 梳理每章节的重点及常考知识点,透彻详细的讲解了重点内容,帮助学生理解; 例题精解 归纳总结本章节涉及到的典型题型,作者基于多年教学经验,选取大量经典题型,深入讲解,分析透彻。 【教材习题详解】教材同步习题解答,供学生课内学习参考。部分习题设有 思路探索 方法点击 帮助学生理解和归纳总结习题。
本书分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、二重积分和三重积分、曲线积分与曲面积分、空间解析几何、级数、微分方程等九个专题,每个专题又含 基本概念和内容提要 竞赛题解析 练习题 三个部分。书中竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。另外,从近几年的硕士研究生入学考试试题中也挑选了部分好题,丰富了本书的内涵。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用.书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到了事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
高等数学是工科类各专业的重要基础课程,也是硕士研究生入学考试的重点科目,其重要性日益凸显,《高等数学辅导》由*考试中心数学阅卷组长张天德老师精心编写。 本书为高等数学(同济六版)的同步辅导全书,分为教材知识全解和教材习题全解两部分: 【教材知识全解】“本节知识结构图解”将每一章、节必须掌握的概念、性质和公式进行了归纳,并以图表的形式给出;“重点及常考点分析”梳理每章节的重点及常考知识点,透彻详细的讲解了重点内容,帮助学生理解;“例题精解”归纳总结本章节涉及到的典型题型,作者基于多年教学经验,选取大量经典题型,深入讲解,分析透彻。 【教材习题详解】教材同步习题解答,供学生课内学习参考。 部分习题设有“思路探索”“方法点击”帮助学生理解和归纳总结习题。
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书为《高等数学(同济 七版)》(下册)的配套辅导书,本书共分为5章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书根据中国数学会制订的 中国大学生数学竞赛大纲 、江苏省普通高等学校非理科专业高等数学竞赛委员会制订的 高等数学竞赛大纲 、教育 部制订的 考研数学考试大纲 编写,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、重积分、曲线积分和曲面积分、空间解析几何、级数、微分方程九专题,每个专题又含 基本概念和内容提要 竞赛题解析 和 练习题 三个部分。本书竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。本书可作为大学生参加高等数学竞赛的的培优教程,也可作为大学生学习高等数学的参考书。
本书是《高等数学》(上、下册)(刘春风主编,科学出版社,2008年)的配套学习指导教材。本书分上、下两册,上册内容为一元函数微积分和空间解析几何与向量代数(共七章),下册内容为多元函数微积分、级数和常微分方程(共五章)。书末附有《高等数学》考研大纲、Math—ematica简介和自测题答案与提示。 本书结构严谨、逻辑清晰;强调方法阐述、力求通俗易懂、由浅人深、富于启发、宜于自学;其中适度嵌入了与“高等数学”相关的数学实验,旨在提高读者应用“高等数学”解决实际问题的能力。 本书可作为高等工科院校工学、经济学等各专业“高等数学”的辅导教材,也可作为相关教师、工程技术人员用书和参考书。
《普通高等教育(理工类)规划教材:高等数学(上册)(第5版)》是根据**制定的“工科类本科数学基础课程教学基本要求”,在原第四版的基础上,加以修订改编而成,本书内容包括:函数,极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分,定积分的应用,常微分方程等8章。书中每节后配有适量的习题及答案或提示。各章之末除了配有复习思考题及参考答案外,还附有“学习指导”。“学习指导”以内容小结与例题分析为主,着重帮助学生深化知识概念并提高解题能力。 《普通高等教育(理工类)规划教材:高等数学(上册)(第5版)》条理清晰,论述确切;由浅入深,循序渐进;重点突出,难点分散;例题较多,典型性强;深广度恰当,便于教和学。本书可作为普通高校(特别是“二本”及“三本”院校)或成人高校工科类
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
本教材根据**颁布的理工类本科高等数学课程教学基本要求,由从事高等数学教学的一线教师执笔编写。本教材分为上、下两册。上册包括函数、极限与连续,一元函数微分学,一元函数积分学以及常微分方程初步内容;下册包括无穷级数,空间解析几何与向量代数,多元函数微分学以及多元函数积分学等内容。每节之后配有习题,习题按照难易程度顺序给出。每册书末附有习题答案及必要的附表、附录及"数学实验"等内容。
韩慧蓉、岳忠玉编写的《高等数学同步作业与训练》是与同济大学数学系编写的《高等数学》(第六版)(上、下册)相配套的同步习题教学辅导书,全书结合教材按章同步编写,共分12章。针对普通应用型本科院校本科生的特点,精选每一章节的习题,既能保证对知识点的全面覆盖,又考虑了各种题型的广泛性与代表性。每章按照每小节一套习题、每章结束有一套自测题的形式进行编写,同时,书的*后附有期中考试和期末考试模拟试题以及2000一2014年考研真题分类汇总,通过对这些题目的分析解答,读者能更好地掌握知识点和提高综合解题能力。 本书可作为普通应用型本科院校、大学独立院校本科生学习高等数学的同步习题教学辅导书,也可供从事高等数学教学的教师布置作业和考试命题使用,还可供报考硕士研究生或自学高等数学的广大读者参考。
本书是陈光曙主编的《大学数学(理工类)》(第2版)上、下册的配套教辅.全书共分10章,各章的名称和顺序都是按照《大学数学(理工类)》第2版的结构顺序编排的,以方便学生学习时对照参考,每一章分为三个部分:一、考试内容和要求,对考试内容和考试要求进行了简要归纳,便于复习时自我检查;二、典型例题选讲,精选了一些具有代表性的例题,其中有一些选自近几年的考研试题,引导学生分析解题思路,归纳解题技巧;三、课后习题解答,对课后的全部习题,包括A类和B类,给出了详细的解答。 《面向21世界普通高等教育规划教材及学习指导:大学数学学习指导与习题详解·配第2版》内容翔实,为学生学好大学数学提供了极大的便利,既可作为选用《大学数学(理工类)》(第2版)上、下册高校学生的配套教辅,也可作为非数学专业学生考
高等数学课程对于大学生来说,其重要性是不言而喻的,近年来被许多部委和省市列为教学的重点评估课程之一。在全国硕士学位研究生考试中被指定为全国统考科目。然而,一方面近年来由于教学改革的实施,高等数学授课时间有所减少,受到时间限制,概念的深入探讨,知识点的融会贯通,知识面的拓展势必受到一定影响;另一方面后续课程以及研究生入学考试对高等数学的要求在教学大纲范围内有深化的趋势。如何解决这一新的矛盾,如何把大学期间高等数学的学习与研究生入学考试复习紧密衔接,为此作者根据在北京大学多年的教学实践以及硕士研究生入学考试高等数学辅导的经验,听取了广大学员的意见,以同济·第六版为蓝本,参考了北京大学、清华大学、复旦大学、上海交通大学、武汉大学、华中科技大学、浙江大学、四川大学、西安交通大学
《大学数学(经管类普通高等教育十二五规划教材)》(编者杨青、朱成莲)是一本专门为经济管理专业大学生编写的大学数学教科书,内容完全参照全国研究生入学考试数学三考试大纲的要求编写。《大学数学(经管类普通高等教育十二五规划教材)》结构严谨,内容详实,例证充分,实用性强,每一节都配备适量的课后习题,用于复习巩固该节内容。数中的例题和习题的难度按从低到到高进行梯级配备,许多近年数学三的考研原题被选人。为方便学生学习,我们将绝大多数课后习题的简答放在本书后部分的附录中,便于对照查阅。该书完全能够满足高校经管类各专业学生的学习需要,既是教科书,又适合自学,可选作高校经济管理专业大学数学的教材,也可作为相关专业学生考研复习时的参考用书。
本书按照“高等数学课程的教学基本要求”,结合“全国硕士研究生入学考试的数学考试大纲”的要求编写而成.内容包括一元函数微积分、向量代数与空间解析几何、多元函数微积分、无穷级数、微分方程等.每章都按照高等数学的教学过程进行分节,每一节又都分为两部分:主要知识与方法、同步练习,另外还特意精选了期末考试、硕士研究生入学考试及全国大学生数学竞赛等试题。 本书可作为高等学校理工科有关专业学习高等数学课程的课后练习,也可作为考研及参加全国大学生数学竞赛的训练资料,并可供高等院校数学教师、自学考试人员及其他相关人员作参考。
一、本章知识图解:知识结构图揭示出本章知识点之间的有机联系,便于学生从总体上系统地掌握本章知识体系和核心内容。 二、教材知识全解:梳理本节知识点在各类考试中经常考查的重要知识点,用表格形式对每节涉及的基本概念、基本定理和公式进行系统的梳理,并指出在理解与应用基本概念、定理、公式时需注意的问题。 三、典型例题解析:作者基于多年的教学经验和研究生入学考试试题研究经验,将该节教材内容中学生需要掌握的、考研中经常考到的重点、难点、考点,归纳为一个个的在考试中可能出现的基本题型,并针对每一个基本题型,举出大量的精选例题深入讲解,可谓基础知识梳理、重点考点深入讲解、联系考试解题三重互动、一举突破。 四、本章整合:本章知识总结系统回顾本章知识,帮助读者更好的复习与总结;考研真题精析针对每一个