本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
. 本书针对大数据决策理论中涉及的安全可靠风险问题,以及可靠性与精确性的制约折中优化的问题,将研究的重点主要集中于基于Bayesian统计推断的粒子滤波算法的研究和应用,在论述粒子滤波算法的同时,主要融入了作者新的研究思想,即点估计观测值 先验概率,同时将多尺度的概念融入粒子滤波中,形成了具有多尺度粒子滤波的算法,利用不同粗细尺度对动态系统状态空间中的一条马尔可夫链进行交替耦合采样,借助于传递和更新状态信息及参数信息来搜索状态和参数的最大联合后验分布似然函数。细尺度的重要采样能保持精度,粗尺度的重要采样能提高运算效率,粗细尺度交替耦合采样则能有效抑制粒子的退化现象。本书为深度学习人工智能并深入研究奠定坚实的理论基础。 本书适合对大数据、统计信号处理、数字孪生系统故障传播根因诊断以及人工智
《线性代数习题精选精解》 本书涵盖了线性代数的知识要点、典型习题、考研真题以及难度稍大的综合习题,汇集了线性代数的基本解题思路、方法和技巧,融入了编者多年讲授线性代数的经验和体会。相信本书会成为读者学习线性代数的良师益友。本书共分六章,每章分若干节,在章节划分和内容设置上与近期新版硕士研究生入学考试大纲接近一致。每章除很后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念、定理和公式进行了系统梳理; 基本题型:对每节常见的基本题型进行了归纳总结,便于学生理解、掌握,可作为学生学习线性代数课的同步练习或习题使用,有利于提高学生的解题能力和数学思维水平。每章很后一节是综合提高题型。这一节的题目综合性较强、有一定难度,特别是有相当一部分是考研真题。通过本节的学习可以提高
本书系统地阐述了以状态空间方法为主的线性系统的时间域理论。全书共12章:第1章介绍与本书密切相关的一些数学基础知识;第2章介绍线性系统的数学描述;第3-5章阐述线性系统的分析理论,分别介绍线性系统的运动分析、能控性和能观性分析以及稳定性分析;第6-10章阐述线性系统的设计理论,分别介绍线性系统的极点配置和特征结构配置、镇定与渐近跟踪、线性二次型最优控制、解耦控制、状态观测器等设计问题;第11章概括性地介绍离散线性系统理论;第12章介绍鲁棒性的概念和几个基本的鲁棒控制问题。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
本“导论”是中国科学技术大学非数学专业通用的讲义,是在40年的使用过程中,经过不断的修订、充实而成的。 与同类书相比,其广度有所拓宽,论证定理、公式逻辑严谨,编排内容循序渐进,阐述概念联系实际,深入浅出。 为加深对概念、定理等的理解和掌握,书中编有丰富的例题,以及习题和总复习题。 本“导论”分三册出版。本册讲述单变量函数微积分,中册讲述空间解析几何、多变量函数微积分,下册讲述组数与常微分方程。 本书另配学习辅导一册。 本册内容包括函数的极限,单变量函数的微分学,单变量函数的积分学,可积常微分方程共四章。 本“导论”可作理工科院校非数学专业或师范类院校数学专业的教材或教学参考书,也可供具有数学基础的读者自学。