数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
本书主要介绍集合论、代数系统、图论、数理逻辑等内容。主要特点有:(1)内容组织上层次分明,结构清晰。(2)叙述严谨,重点突出,深入浅出,便于自学。(3)对部分定理只给出了直观解释,没有给出证明,主要是为了重点突出,避免舍本逐末。(4)书中各章配有大量的例题与习题,旨在培养、提高学生运用基础理论来分析问题、解决问题的能力。对绝大部分习题均给出了答案。(5)书后附有客观题,并给出了答案,供学生自己检测。本书是编者在长期从事离散数学教学工作的基础上编写而成的,主要适用于应用数学专业的本科生,同时也适用于计算机科学与工程及其它相关专业和层次的学生。
《高等教育“十二五”规划教材:线性代数》是为高等院校非数学专业普遍开设的“线性代数”课程编写的教材,其内容主要包括矩阵与初等变换、矩阵代数、行列式、向量间的线性关系与线性方程组、特征值与特征向量、向量的内积与正交化、二次型等。每章后都附有习题。全书理论体系完整、逻辑严密、推理简洁,适用于教学。 《高等教育“十二五”规划教材:线性代数》可作为高等院校经济管理专业以及其他一些理工专业的教材,也可作为自学的参考用书。
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
“中国文化知识读本”丛书是由吉林文史出版社和吉林出版集团有限责任公司组织知名专家学者编写的一套旨在传播中华五千年传统文化,提高全民文化修养的大型知识读本。 王泽妍编著的《古代数学与算学》为丛书之一,生动介绍了古代数学发展、古代算术名家、古代算书、古代记数制度和计算工具等内容。 《古代数学与算学》中优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的物态文化、制度文化、行为文化、精神文化等知识要点全面展示给读者。
本书根据高等院校理工类本科专业线性代数课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应即时实现实验操作。本书内容涵盖了行列式、矩阵、线性方程组、矩阵的特征值、二次型等知识。 本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
本书内容包括三部分:集合论、图论、近世代数。全书共分十五章,讨论了集合及其运算、映射、关系、无穷集合及其基数、模糊集合论、图的基本概念、树和割集、连通度和匹配、平面图和图的着色、有向图、半群和幺半群、群、环和域、格、布尔代数。每节后配有难度不同的习题。 本书可用作高等学校计算机科学与技术/工程等专业的教材,也可供有关专业的科技人员参考。
《数学四色问题证明》详细地介绍了四色问题的数学证明方法,即在证明了三次平面图形成定理、边二色回路定理和面二色通路定理的基础上,进而证明了四色问题成立。这些证明的思路和方法,对于启发人们数学思考的多样化和推动基础数学研究的发展是大有益处的。本书由时徐俊杰著。
《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》主要内容包括矩阵及其运算、行列式及其计算、矩阵的逆、Gramer法则、矩阵运算的实际案例分析、矩阵运算的Matlab实验,矩阵的初等变换与初等矩阵、向量的线性相关性、向量空间、向量的线性相关性的实际案例分析、向量的线性相关性的Matlab实验,线性方程组的相容性、齐次线性方程组、非齐次线性方程组、线性方程组实际案例分析、求解线性方程纽的Matlab实验、方阵的特征值与特征向量、矩阵的相似对角化、实对称矩阵的正交相似对角化、二次型及其标准型、正定矩阵与正定二次型、相似对角化与二次型标准化的实际应用案例分析、相似对角化的Matlab实验,线性空间的基本理论等。《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》理论叙述详细,例题丰
本书是为理工科大学理工与经济学类专业"线性代数"课程编写的教材,内容包括:线性方程组与矩阵,方阵的行列式,矩阵与向量的运算,向量组与向量空间,矩阵特征值和特征向量,二次型,Matlab在线性代数中的应用。每节内穿插有例题,练习题,每章末附有习题。书末附录有行列式的全排列及逆序数方法定义,习题解答。本书结合理工科与经济类专业教学实际,注意理论和实际相结合,选材适当,体系新颖,论述严谨,条理清楚,对概念的解释透彻,便于教学和学生自学。
《几何与代数导引》覆盖了“高等代数”与“解析几何”这两门课程的教学内容。《几何与代数导引》共分8章,分别讨论:向量、平面与直线,二次曲面与坐标变换,线性空间与线性映射,矩阵、线性方程组与行列式,多项式,线性变换,双线性型与欧氏空间,仿射空间与射影空间。本书力求体现几何与代数的内在联系,强调线性空间与线性映射的观点,突出向量、坐标、标准形的线索,注重学生的抽象思维能力和空间想象能力的培养。
《组合数学》介绍组合数学的基本内容。全书共10章,如组合计数方面的递归关系、母函数、容斥原理、Polya定理等基本计数方法,存在性方面的抽屉原理、有限几何以及组合设计方面的正交拉丁方等。此外,书中还包含了许多有趣的例子和作者的一些研究成果。
本书共分六章,章线性代数概要与提高,总结了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细研究了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间,正交性,线性变换,张量积等的应用;第三章特征值与矩阵的Jordan标准形,证明了Schur三角化定理与Cayley-Hamilton定理,给出了矩阵在相似变换下的最简形式即Jordan标准形,讨论了特征值估计的盖尔圆盘定理,介绍了特征值与特征向量在统计学和经济学中的一些应用。
本书论述有限域上各类典型矩阵在群作用下构作的结合方案,其内容主要包括有限域上的长方矩阵、交错矩阵、Hermite矩阵、对称矩阵和二次型构作的结合方案,导出各类结合方案的一般参数计算公式,讨论这些结合方案的本原性、对偶性、P多项式等基本性质以及自同构群。书中还特别论述了特征数为2时二次型结合方案的特征值及其聚合方案的对偶方案。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。