这是《不等式的秘密》一书的第二卷,取名为《不等式的秘密(第2卷高级不等式)》。在本卷你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明。 在此,你可以找到证明不等式的现代方法:整合变量法、乎方分析法、反证法、归纳法和经典不等式的使用方法。正如你阅读过的本书卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能。 我们希望,作者范建熊倾注在本书关于不等式方面的热情和汗水对你有用。
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书共6章,介绍了方程式解成根式的问题 低次代数方程式的根式解法、数域上的多项式及其性质、用根的置换解代数方程 群.论四次以上方程式不能解成根式、以群之观点论代数方程式的解法以及抽象的观点 伽罗瓦理论的相关知识. 本书适合高等学校数学相关专业师生及数学爱好者阅读参考.
李晓艳、魏晓娜、李永军编写的《线性代数与解析几何(普通高等教育十三五规划教材)》内容包括行列式、矩阵与线性方程组、几何向量与坐标、轨迹与方程、平面与直线、线性空间、特征值与特征向量、二次型与常见的二次曲面,同时附有多个应用教学案例,本书的特点是强调几何与代数的融合,强调从具体到抽象的思维方式,以及从问题出发引入概念与内容的教学模式。 本书可作为理工科和其他非数学类专业高等院校的教学用书,也可作为各大专院校或成人教育学院的学生教材,还可作为考研生、自学者和广大科技工作者的参考资料。
《初中数学千题解》是“浙江思美数学”团队为初中学生与数学教师量身打造的精品丛书。本分册由代数综合100题和圆100题及其解析组成。前者包括数与式、方程与不等式、函数与代数综合以及数论等内容;后者包括圆与折叠、圆与相似、圆中的动点问题、隐形圆问题、圆幂定理相关拓展、圆的综合等内容。书中题目都有详解,并设“思路点拨”栏目,使学生不仅知其然, 知其所以然。 书中题目精选自全国各地知名中学的经典考题,具有很高的实战价值,同时兼顾重点高中的自主招生考试,个别习题难度较大,适合尖子生研习。
本书是一部数学问题集,全书分为方田(面积、分数计算)、粟米(比例) 、衰分(配分比例)、少广(开平方、立方)、商功(体积计算)、均输(复杂的配分比例)、盈不足(盈亏)、方程(线性方程组)、勾股(勾股计算及测量)等九章,共246问2O2术,故称“九章算术”。其内容涉及算术、代数、几何等诸多领域,并与实际生活紧密关联,充分体现了中国人的数学观和生活观。全书章与章之间、同章“术”与“术”之间、同“术”所驭算题之间按照由浅入深、由简而繁的顺序编排。 这是一部与现代数学的主流思想完全吻合的中国数学经典著作,一部早却能体现现代宇宙学精神的书。它被历代数学家尊为“算经之首”的《九章算术》,是中国古代算法的扛鼎之作,与古希腊欧几里得的《几何原本》并列为途径方法大不相同的、东西辉映的世界两大数学体系的代表。本书是其白话译本
本书分“解三次和四次多项式方程的故事”、“向五次方程进军”、“一些数学基础”、“扩域理论”、“尺规作图问题”、“两类重要的群与一类重要的扩域”、“伽罗瓦理论”及“伽罗瓦理论的应用”八个部分逐步展开,引导读者一步步去解决一系列重大的古典数学难题。
本书分“解三次和四次多项式方程的故事”、“向五次方程进军”、“一些数学基础”、“扩域理论”、“尺规作图问题”、“两类重要的群与一类重要的扩域”、“伽罗瓦理论”及“伽罗瓦理论的应用”八个部分逐步展开,引导读者一步步去解决一系列重大的古典数学难题。
本书系统地介绍了非线性化问题的有关理论与方法,主要包括一些传统理论与经典方法,如非线性化问题的性理论,无约束优化问题的线搜索方法、共轭梯度法、拟牛顿方法,约束优化问题的可行方法、罚函数方法和SQP方法等,同时也吸收了新近发展成熟并得到广泛应用的成果,如信赖域方法、投影方法等。
《方程式论》是已故英国群论大师伯恩赛德和班登的一本代数学经典著作。书中详细地介绍了代数方程的各种解法及根的各种性质。对了解代数方程的历史也是很好的素材。 《方程式论》适合大中师生及数学爱好者阅读及收藏。
《高等代数选讲》较全面、系统地总结和归纳了高等代数中的重要知识点以及典型问题的解题方法和技巧。全书共10章:多项式、行列式、线性方程组、矩阵、方阵的特征根与相似对角化、λ-矩阵与若尔当标准形、二次型、向量空间、线性变换、欧氏空间。 本书十分注重解题方法的归纳和总结,每章各节在简要介绍基础知识的基础上,针对该节中涉及的常见问题,系统地总结了常用的解题思想和方法,并结合典型例题(以考研试题为主)揭示每一种方法的应用技巧和应注意的问题。 《高等代数选讲》可作为数学专业高等代数选讲课程的教材,也可供数学专业学生考研学习使用,还可作为理科、工科学生学习高等代数与线性代数课程的参考书。
《矩阵不等式》编著者燕子宗。《矩阵不等式》内容提要:本书主要讲述了矩阵不等式的重要结果和重要方法。作者强调思想方法。选择了重要的结果和技巧作为素材,注重对矩阵不等式的新思想和新方法的归纳和整理。内容丰富。具有一定深度,反映了矩阵不等式*研究成果。全书共分14章第1章介绍矩阵论预备知识,第2到14章分别讨论了 cauchy BunyakovskySchwarz型不等式及其逆形式、控制不等式、Schur补理论、投影方法、特征值的估计、矩阵单调函数,变分方法、凸性方法、Kanl㈣Ich型矩阵不等式、算子不等式,数值域和幂有界算子。本书重点讨论了Cauchy。Bunyakovsky-Schwarz捌不等式及其逆。凸性方法构造矩阵不等式以及矩阵单调性等内容,对近的数值域和幂有界算子等前沿问题也给予了充分关注。全书表达简洁流畅,读者可以在较短时间内了解和掌握矩阵不等式的主要