本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
《解析数论问题集(第2版)》是课后大约500个解析数论习题的汇编,同时也是解析数论的基本教程。全书共分为两部分:习题与解答。读者可通过这些习题学习解析数论的一些重要方法,了解解析数论的研究领域。 《解析数论问题集(第2版)》可供大专院校数学系师生、研究生及相关的学科工作者阅读。
本书是关于线性代数的专用工具书,内容涉及线性代数学的基础内容:行列式与矩阵、向量与线性方程组、特征值理论及其应用、线性空间与线性映射以及欧氏空间. 本书是按题典模式编写的题库. 为了便于查找,除了将内容按章分列以外,在每一章中再按不同主题细分成若干小节.在各节的开始处,一般都简述了本节所涉及的基本概念、公式与结论. 全书共精选了约1100道例题,有深有浅,覆盖面广. 在题型方面,以计算题为主,也有大量证明题和选择题. 本书可作为各类高等院校学生的学习参考书和教师的教学参考书,以及科技人员的工作参考书,也可作为各类专业考研生的复习资料。
数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣 或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间 他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基!
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
《数论经典著作系列:解析数论基础》以解析数论的三个问题:素数分布、Goldbach问题和Waring问题为中心,很好地阐明了解析数论的三个重要方法:复积分法、圆法及三角和法本书的特点是少而精,叙述和证明简洁阅读本书仅需要初等数论、微积分及复变函数基础知识,书中有不少习题,其中一些是近代解析数论的最重要的成果,读者可通过这些习题了解近代解析数论的研究领域。本书可供大专院校数学系师生、研究生及有关的科学工作者阅读