本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
《数学分析选讲》分为上、下两册.本书为上册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书.目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。 本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学.每章由基本概念分析和解题方法分析两部分组成.前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。 本书对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用.所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平.本书对从事数学分析和高等
本书是学习数学分析课程的一本极好的指导书。本书的编写顺序与一般的数学教科书同步,本册内容包括级数、函数项级数与幂级数、傅里叶级数、多元函数微分学、隐函数定理及应用、向量函数微分学、重积分、曲线积分与曲面积分。读者可以通过学习它循序渐进地理解和掌握数学分析的概念和方法。本书在归纳内容、释疑解难的基础上,用大量、全面的例题为读者诠释概念、演绎技巧、举证方法,使读者可以更好地融会知识、理解概念、熟悉技巧和掌握方法。因此,读者有必要认真学习本书,通过它化教科书上的抽象概念为自己的切实有用的知识。 希望本书能成为你的良师益友,欢迎你选用本系列丛书。
上海交通大学数学系是全国工科数学教学基地, 数学教学成绩一直以优秀闻名全国。上海交通大学数 学系编写的《数学分析试题分析与解答(新核心理工 基础教材普通高等教育十二五重点规划教材配套辅导 )》选编了该校近年的24份本科生数学分析试卷,对 每一道试题均作详解,并有题前分析和题后点评,指 明解题思路和方法以及学生在解题过程中常犯的错误 ,有的题还给出多种解法。 本书可作为高等院校《数学分析》课程师生的教 学辅导用书,也可供考研者参考。
吉米多维奇的《数学分析习题集》是一部著名的、很有代表性的习题集。编者根据我国目前的教学实际情况,选编了其中约三分之一的重要习题,并作了详细解答,分上、下两册出版。本书覆盖了该习题集各章节的主要内容,便于读者由厚到薄、由少而精地掌握该习题集内容,这对学习理科数学分析或工科高等数学(即微积分)的读者将大有裨益。 本书有很强的可读性,并兼顾多方需要,适合理、工科等的本、专科各专业教、学数学分析或高等数学(微积分)的师生作为教学参考书。
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来国内各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的全部例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
本书比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是本书在数学思想方面的体现。 本书章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出普遍的表示形式。
《数学分析选讲》分为上、下两册。本书为下册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书。目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学。每章由基本概念分析和解题方法分析两部分组成。前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。《数学分析选讲》对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用。所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平。本书对从事数学分析和高
作为一种辅导性教材,本套丛书力求做到有的放矢,恰到好处。体例设计具有如下特色: 1.知识点概括:每章首先介绍基本理论与方法,尽量避免使用抽象方法,尽可能用简单的方法,做到深入浅出。内容按照基础知识点、重要知识点和疑难知识点进行划分,方便学生对整章内容进行整体性地把握。 2.易考题型解析及解题技巧总结:在此部分,我们列举了大量难度不等的易考常考题型,并针对每种题型给出解题思路和解题技巧,对学生的学习有着很强的启发性,能够帮助学生开阔思路、活跃思维、举一反三、触类旁通。书中例题都非常新颖,有着实际工程应用背景,很有参考价值,一改国内教材习题大同小异的弊病。 3.课后习题详解:完全针对*经典教材*版本的课后习题给予解答。解答过程中力求做到概念清晰、步骤完整、数据准确、附图齐全,必要时给
心算,看似神奇,实则有规律可循。 中国人的数学能力,在世界上首屈一指,绝非偶然。有很多充分掌握心算奥秘的密码。 指算六十甲子是心算万年历的一种方法,更是一个密码;多位数多样式乘法,也有快速完成的窍门。 阅读此书,加以练习,你也能成为 心算达人 !
本书是大学数学的内容、方法与技巧丛书之一,对常微分方程的主要内容、基本方法与常用技巧进行了全面的讨论与分析,用大量的例题对所讨论的内容与方法作了演示与论证。全书的内容包括初等积分法、基本定理、线性微分方程、线性微分方程组、定性与稳定性概念及一阶偏微分方程。本书用简明易懂、通俗流畅的语言深人浅出地诠释概念、解析疑难、演绎方法与投巧,帮助读者理解与熟悉常微分方程的基本概念与理论,培养读者运用常微分方程方法分析问题与解决问题的能力,本书与教材同步,在方法与技巧上略有拓宽与提高,是大学生、工程技术人员与经济分析人员的、读之有益的一本好书。
本书主要应用Karamata正规变化理论,上、下解方法和局部化方法,系统研究半线性椭圆方程(组)边界爆破解的存在性、渐近行为和性。一方面,无论非线性项在无穷远处是正规变化还是快速变化时,建立了椭圆方程(组)边界爆破解的渐近行为的统一处理模式,特别是这里给出的渐近行为是显式公式,而不是通过某个积分方程或者常微分方程的解来刻画。另一方面,重点考虑了椭圆方程组边界爆破解的渐近行为和性,特别是在没有解的精确渐近行为时,应用*的迭代技巧,证明了方程组边界爆破解的性。
《数学分析的方法与题解》是一本与众不同的教和学的参考书,基本上按照现行数学分析教材的章节逐一对应编写的。每一节包括内容提要和例题两部分,分析问题思路清晰,不含含糊糊;解题过程条理清楚,说理透彻,既不生搬硬套,也不牵强附会,通过对大量典型例题的分析和求解,提示数学分析的方法、解题规律和技巧。尤其提出了“不求没缺点,而应有特色”的目标,给出了一些原创性问题,有益于启迪思维、培养创新能力。 本书可作为理工科院校本科生学习数学分析的学习辅导书及数学分析习题课的参考书,也可作为考研的数学分析复习指南。
“数学分析”是数学专业的基础课,本书是根据安徽省师范院校数学专业学生的基础情况、教学背景等因素量身打造的数学专业课教材之一.教材内容是由讲授此课程多年的老师经过多次讨论商定的,其中包括一元微积分学、多元微积分学、级数理论等基础内容,分上、下两册.本书适合师范院校数学专业本科生使用,也可供各高校数学系教师参考.
本书是一部实分析方面的经典教材,主要分三部分,第壹部分为经典的实变函数论和经典的巴拿赫空间理论;第二部分为抽象空间理论,主要介绍分析中有用的拓扑空间以及近代巴拿赫空间理论;第三部分为一般的测度和积分论,即在第二部分理论基础上将经典的测度、积分论推广到一般情形。.
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其*发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。