本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
本书根据《高职高专教育高等数学课程教学基本要求》一元函数微积分部分编写,全书共九章,包括函数定义及其性质的应用、极限的求法、函数连续性的判断与应用、导数的计算、中值定理与导数应用、不定积分的计算、定积分的计算、定积分的应用以及常微分方程解法等内容,精选了这些内容中的典型题型,并给出了详尽的分析和具体解法. 本书可作为高职高专工科类各专业习题课教材,也可供经管类专业使用,还可作为“专升本”及学历文凭考试的参考书及相关学习资料。
马立新编著的这本《复变函数论(第2版)》共6 章,主要内容包括复数与复变函数、解析函数、 复变函数的积分、级数、留数及其应用和共形映射等 ,较全面、 系统地介绍了复变函数的基础知识。内容处理上重点 突出、叙述 简明,每节末附有适量习题供读者选用,适合高等师 范院校数学 系及普通综合性大学数学系高年级学生使用。
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
本辅导教材由以下几个部分组成: 1. 概念、定理及公式:列出相应各章的基本概念、重要定理和重要公式,突出必须掌握或大考试中现频率较高的内容; 2. 重点、难点解答:列出相应各章的重点、难点内容,并对重点、难点内容给出了相应的解释说明,以帮助广大同学对相应内容理解得更加透彻; 3. 典型例题解答:精选一些具有代表性的例题进行了详细的解答,这些例题涉及内容广、技巧强,可以使广大同学举一反三、触类旁通,开拓解题思路,更好地掌握复变函数的基本内容和解题方法; 4. 课后习题全解:教材课后习题、层次多、许多基础性问题从多个角度帮助理解基本概念和基本理论,因此我们对课后的全部习题给出了详细的解答。
《实变函数论专题梳理与解读(面向21世纪普通高等教育规划教材)》共分7章,每一章由四个部分组成:内容小结、要点分析、例题选讲、习题解答。其中,在“例题选讲”中精选了若干有针对性的例题,每一个例题都对所给的条件进行分析,寻找和发现解题的思路,给出了详尽的解题过程;在“习题解答”中详细解答了徐新亚编写的《实变函数论》中的所有习题。 全书选题多样,难度配置合理,注重分析推理,题目叙述清晰、论证严密,注意对分析能力与研究能力的培养,尤其是对创造性能力的培养。本书可作为综合性大学、理工科大学、高等师范院校数学系数学、概率统计和应用数学专业学生的学习辅助用书。对从事数学分析、实变函数教学工作的青年教师是一部实用的教学参考书。
本书是作者在多年从事实变函数教学实践所积累的大量实际教学经验的基础上编写而成的。全书对实变函数中的主要概念和定理作了细致的解释和比较直观的描述,叙述深入浅出,易学好懂。内容包括集合、点集、可测集合、可测函数、Lebesgue积分、微分与不定积分的函数空间。在有关定理的证明时,尽可能地对其证题思路进行分析和引导,从而极大地降低了理解难度。在例题的选取方面,注意到了难度上的阶梯配置,由浅入深,循序渐进。另外每一章末还配备了一定数量的习题,为学生课后的学习巩固提供了有益的帮助。 本书可用作普通高等院校数学类本专科学生的教材或考研复习参考书,也可用作理工科有关专业的研究生教材,还可供有关教师及研究人员参考。
本书系统地介绍了许瓦兹引理、保角映射以及复函数的逼近。 并且着重地介绍了Carathéodory和Kobayashi度量及其在复分析中的应用。 论述深入浅出,简明生动,读后有益于提高数学修养,开阔知识视野。 本书可供从事这一数学分支相关学科的数学工作者、大学生以及数学爱好者研读。