微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。《Barron'sAP微积分》(作者博克、霍基特)是关于介绍微积分的专著。
《研究生教学用书:微分流形初步》是微分流形理论的入门教材,是联系经典数学和当代数学文献的桥梁,主要内容是介绍微分流形的基本概念和例子、微分流形上的光滑切向量场、光滑张量场、外微分式的运算和性质,以及黎曼流形、李群、微分纤维丛的初步知识。全书的叙述深入浅出,平易流畅,重点突出,强调几何背景,着重介绍在微分流形上如何通过局部坐标系来处理大范围定义的数学对象。通过《研究生教学用书:微分流形初步》的学习,会在微分流形的理论和应用方面打下坚实的基础,并且为学习当代数学文献创造条件。
本书从理论和实践出发,全面介绍求解微分方程的数值方法——有限差分法,并简单地介绍有限元法. 全书共6章,主要内容包括:预备知识、常微分方程的数值解法、抛物型偏微分方程的有限差分法、双曲型偏微分方程的有限差分法、椭圆型偏微分方程的有限差分法、有限元法简介等. 本书提供配套电子课件、例题程序代码、课后习题参考运行结果及程序代码等。