由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
近些年随着技术的快速发展,多组学数据越来越广泛地应用在了生物及医学研究领域,这些丰富的实验数据成为了精准医疗的重要支撑,但同时也给统计学家提出了严峻的考验,如何处理分析这些数据成了重要的研究课题。本书主要面向复杂疾病中产生的复杂数据进行统计建模和计算,有效整合多组学数据 ,对复杂疾病的机理认识和风险预测具有重要的意义。本书结构合理、概念清晰,可作为对统计遗传、生物统计等方面感兴趣的研究人员的学习资料。
本书是在第七版的基础上修订而成的,共有十三章,内容包括:绪论、统计调查、统计整理、总量指标和相对指标、平均指标与变异度指标、概率与概率分布、抽样与参数估计、假设检验、相关与回归、时间数列分析指标、时间数列预测方法、统计指数、统计分析与统计新闻写作。各章均配套适量思考与复习题,供读者巩固练习;书末附有相关实用数值表,以供查对。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及。省级骨干教师培训班参考用书。
本书系统地介绍了抽象代数这一重要数学分支的最基本的内容,其中包括群论、环论与域论。在域论这一章中还比较全面地介绍了有限Galois理论,书中还配备了数量、难易程度不一的习题,习题均有解答或提示,书后有附录。 本书可供综合性大学、师范大学数学系学生阅读,可作为教材,亦可供理科各系以及信息、通讯工程专业的大学生、研究生及老师参考。
《大学数学:概率论与数理统计(第二版)》注重体现工程实际应用背景且注意为现代概率论与数理统计新知识留有接口,同时精简、压缩一些传统内容,淡化计算技巧的训练,加强理论基础的培养;重新组织、精选了例题及习题,使之更有利于培养工科学生利用概率统计方法解决和分析工程实际问题。 《大学数学:概率论与数理统计(第二版)》内容包括随机事件与概率、条件概率与独立性、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征与极限定理、数理统计的基本概念、参数估计、假设检验、单因素试验的方差分析及一元正态线性回归等九章,前6章配备了拓展例题,对其理论与方法作适当的加深和拓广。附录介绍了如何使用MATLAB软件处理概率统计问题。《大学数学:概率论与数理统计(第二版)》适合本科院校工科各专业学生使用,
本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划模型,层次分析模型,模型,动态规划模型,图论模型,最短路模型,网络流模型,数学建模竞赛案例选讲,MATLAB软件使用简介等。
统计学原本就是一种“闻一知十”的方法,随着IT的进步,大数据分析获得长足的发展,统计学越来越受到重视。尤其是文科出身的人,很多都有这样的憧憬:假如自己能够运用统计学进行工作那该多酷!如果你可以做到用数据的形式向上司汇报;亮出漂亮的图表,运用逻辑而不是小聪明向客户进行宣讲……那么你就是职场精英了。 本书的目的就是满足这样的需求,通过大量的插图和图解,循序渐进地传授统计学的精粹。 的特点就是将统计学的关键词形象化,用“一句话概括”的风格来介绍统计学的各项概念和内容。希望读者朋友通过阅读本书,拨开“统计学迷雾”,开启学习统计学的“ 步”。
本书针对“离散数学”有关教材中集合论、代数系统、图论和数理逻辑四大部分的内容,分为十章进行编排。按照基本知识点、问答与论证、解题思路与方法三个层次.由浅人深地编入了359个具有代表性的例题。解答详实,注重基本概念的理解、分析能力的培养和逻辑思维的训练。 本书可供高等院校计算机及有关专业本、专科师生作为离散数学课程的教学和学习参考书,也是离散数学自学者的良好辅导资料。
本书主要介绍工程技术中常用的试验设计与分析方法。内容包括方差分析、因子设计、正交试验设计、稳健设计和可靠性设计,其中稳健设计是较新的试验设计方法。本书内容丰富,例题多样,紧密联系实际。书中配有一定数量的习题,书后附有习题答案。概率统计的基础知识作为附录A列于书后,附录B是常用的分布表和正交表。本书可作为理工科各专业及管理专业的大学生、研究生的教材,也可供工程技术人员、科研人员和教师参考。
Б.П.吉米多维奇是前苏联有影响的教育家和数学家。他主编的《吉米多维奇数学分析习题集》(含4462道习题),内容丰富,覆盖面广泛,针对性强,在我国有较大的影响,书中的许多习题,都广泛地被我国多所高等院校《微积分》教材所采用,有些题目甚至出现在全国考研等试题中。《吉米多维奇——高等数学习题精选精解》。对该书进行了精选,共分八章,每章又分若干节。在章节设置上与财经院校《微积分》教材基本一致,涉及的内容涵盖了《微积分》的主题,涵盖了硕士研究生入学考试数学纲的内容。
本书是分析领域内的一部经典著作。毫不夸张地说,掌握了本书,对数学的理解将会上一个新台阶。全书体例优美,实用性例优美,实用性很强,列举的实例简明精彩。无论实分析部分还是复分析部分,基本上对所有给出的命题都进行了论证。另外,书中还附有大量设计巧妙的习题——这些习题可以真实地检测出读者对课程的理解程序,有的还要求对正文中的原理进行论证。
本书共分十三章,分为三个部分。章至第四章为上篇,主要介绍数学思想方法的两个源头、数学思想方法和几次重要转折、数学的真理性以及现代数学的发展趋势,从时间维度和宏观上用粗线条勾画出数学思想方法发展的概貌。其中第三章“数学的真理性”对于了解现代数学观、确立现代数学教学观颇有帮助。但是,考虑到教学课时较坚以及某些地区小学教师的专业水平有限,将此为列为选学内容。第五章至第十章为中篇,该篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与模型、分类、数形结合、特殊化学数学思想方法,为在教学中加以应用打下扎实的基础。第十一至第十三章为下篇,该篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其教学原则,以及三个数学思想方法教学案例。希望这部分
本书是为“科学计算方法”课程而编写的教材。在编写过程中力求做到:在内容上取材适中,突出重点,强调方法的构造与应用;在讲解方式上论述思路清晰,推导过程简捷,既重视理论分析,又避免过多的理论证明;存算法方面注重原理介绍,而将具体过程与数学软件MATLAB结合起来介绍。 书中各章均配有评注内容,除指出本章重点外,还对未涉及的内容给出参考书目,供学生进一步学习时选用。为了帮助学生巩固基本概念,掌握基本内容和方法,引导学生思考和复习并培养用数学软件解决问题的能力,各章都安排了复习与思考题、习题与实验题。
《大学数学试题解析系列:高等数学试题分析与解答》选编了上海交通大学近年的20份本科生高等数学试卷,对每一道试题均作详解,部分题目有题前分析和题后点评,指明解题思路和方法以及学生在解题过程中常犯的错误,有的题还给出多种解法, 《大学数学试题解析系列:高等数学试题分析与解答》可作为高等院校《高等数学》课程的教学辅导用书,也可供考研者参考,
《论概率》迄今为止,代数沿袭已超过哲学家对其发展过程更深刻的探索,以至于概率往往被人认为是数学而不是逻辑。因此,《论概率》就概率的逻辑性展开阐述,书中有很多新颖的、创造性的理论,并有针对性地提出概率的系统性理论,以希望得到得到大家的指正和补充。
本书是在第七版的基础上修订而成的,共有十三章,内容包括:绪论、统计调查、统计整理、总量指标和相对指标、平均指标与变异度指标、概率与概率分布、抽样与参数估计、假设检验、相关与回归、时间数列分析指标、时间数列预测方法、统计指数、统计分析与统计新闻写作。各章均配套适量思考与复习题,供读者巩固练习;书末附有相关实用数值表,以供查对。
本书针对“离散数学”有关教材中集合论、代数系统、图论和数理逻辑部分的内容,分为十章进行编排。按照基本知识点、问答与论证、解题思路与方法三个层次.由浅人深地编入了359个具有代表性的例题。解答详实,注重基本概念的理解、分析能力的培养和逻辑思维的训练。 本书可供高等院校计算机及有关专业本、专科师生作为离散数学课程的教学和学习参考书,也是离散数学自学者的良好辅导资料。
《概率论与数理统计(第2版)/高等学校“十三五”重点规划工科数学系列丛书》是以全国高等院校工科数学课程教学指导委员会修订的《概率论与数理统计课程基本要求》为依据,以“厚基础、宽专业、重应用”为指导思想,按照“概率理论扎实,重在统计应用”的原则编写而成的。《概率论与数理统计(第2版)/高等学校“十三五”重点规划工科数学系列丛书》注重概率理论的完整性与数理统计的实用性相结合,强调数理统计在科学研究中的重要性,培养学生的统计应用意识,是一部适应不断变化的教学改革形势,面向研究型大学人才培养需要的教材。 《概率论与数理统计(第2版)/高等学校“十三五”重点规划工科数学系列丛书》共分9章,包括事件及其概率、变量及其分布、多维变量及其分布、变量的数字特征、大数定律和中心极限定理、数理统计的基