庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
《实分析中的反例》汇集了实分析中的大量反例,主要内容有集合、函数、微分、Riemann积分、无穷级数、一致收敛、Lebesgue测度和Lebesgue积分、有界变差函数和连续函数。对平面点集、二元函数和二重积分方面的反例也做了介绍。 《实分析中的反例》可供高等学校数学类各专业的本科生、研究生以及教师参考。
本书是英国统计与遗传学家R.A.费希尔流传最广泛的一部力作,比较完善地叙述了统计推断方法的理论及其在实际中的应用,对科学推断作为一种理解世界的手段的合理性进行了提炼和总结。本书主要包括统计学早期的尝试和困难,定量推断的形式,关于显著性检验的一些错误,关于概率和可能性推断的简单例子等内容。 本书适合大学师生及相关专业人员或对统计学感兴趣的读者阅读。
《数学家读报》结构上类似早报,从数学的角度分析了新闻中的各种故事。全书共分五个部分,每个部分都由很多节组成,每节都有一个大标题作为开始。这些章节会考虑一些相关的、隐含的数学,并且研究数学是如何帮助说明故事的。偶尔,《数学家读报》也会揭穿一些骗局。
《高等代数》是1978年出版的《高等代数》的第三版。1978年版则是作者在他们所编的《高等代数讲义》(1964年)、《高等代数简明教程》(1965年)的基础上修改而成的。这次修订,增加了整数的可除性,删去了广义拟及最后一章的代数基本概念内容。另外,还作了多处的文字修订,并局部地改善了一些内容的处理。
本书是一部概述世界各个国家和地区情况的中型综合性工具书。本书较全面、系统地展示了世界225个国家和地区的自然和社会,历史和现状,政治和经济,科学和技术,文化和宗教,民族和民俗,语言和文字,城市和旅游等诸方面情况。它以翔实的资料,可靠的数据,生动的论述和新的信息及时地反映了世界各个国家和地区的发展变化。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
从数学的整体把握、教学的整体把握、学生的整体把握等三个基本维度展开。在整体分析中,目的是让教师抓住该单元内容的数学本质,使教师在教学时能定位准确,教学最重要的就是要突出重点,对于重点内容,都要千方百计地让学生掌握,对于细枝末节的非本质内容,没有必要花费太多的时间和精力。
《广义相对论基础》是一本简明扼要的广义相对论入门教材,在内容选择上,突出物理图像、物理内容和物理思想,同时在数学上自给自足。注意把广义相对论基础与科研前沿衔接起来,希望能让初学者尽快进入科研的大门,然后再“干中学”,边研究,边学习,在实践中逐步提高。叙述上兼顾了科学性和可读性,作者尽可能阐释相对论的关键和难点,帮助读者克服学习中的困难,掌握相对论的精髓。书中还介绍了广义相对论研究的若干前沿问题,注意把广义相对论展示为一个开放的科学领域,让读者看到它发展的曲折经历,以及当前尚未解决的问题,特别是其中的基本问题。内中一些带有根本性的问题,也许会给读者带来愉快的、有益的思考。此外,书中还评述了相对论的建立和发展过程中的一些重要突破,增加了学习的趣味性,并使读者能从中体会科学研究的