这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
《统计学精品译丛:*过程(原书第2版)》中文简体字版由约翰威利父子公司授权机械工业出版社独家出版。未经出版者书面许可,不得用任何方式复制或抄袭本书内容。 《统计学精品译丛:*过程(原书第2版)》从概率的角度而不是分析的角度来看待*过程,书中介绍了*过程的基本理论,包括Poisson过程、Markov链、鞅、Brown运动、*序关系、Poisson逼近等,并阐明这些理论在各领域的应用。书中有丰富的例子和习题,其中一些需要创造性地运用*过程知识、系统地解决的实际问题,给读者提供了应用概率研究的实例。 《统计学精品译丛:*过程(原书第2版)》是*过程的入门教材,没有用到测度论,仅以微积分及初等概率论知识为基础,适合作为统计学专业本科生以及其他理工和经管类专业研究生相关课程的教材,更值得相关研究人员和授课教师参考。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书是国内全面讨论概率论发展与先进数学技术的学术专著,较全面、翔实地概述了概率论的发展历史。从初的博弈分析问题到现今方法论综合性学科,全书勾勒出概率论兴起、发展和壮大的清晰脉络,并简要介绍了当前概率论学科的主要研究方向和发展动态。本书也试图从概率论教学角度诠释概率思想,以期让更多的读者从中受益。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
在数学科学的几乎所有的分支中,不等式常常起着重要的甚至是关键的作用。本书搜集整理了概率论中一批常用的基本不等式,并对其中的绝大多数不等式给出了证明。除了一些熟知的不等式以外,书中对某些不等式还提供了相关的参考文献。
本书是研究生《矩阵分析与应用》的配套用书,由矩阵与线性方程组、特殊矩阵、矩阵的变换与分解、梯度分析与化、奇异值分析、总体小二乘方法、特征分析、子空间分析与跟踪、投影分析共9章组成。每章均包含两部分内容:部分总结复习该章所涉及的主要理论知识,第二部分为习题的详细解答。所选习题分为基础题型、综合题型、应用题型。这些习题可以帮助读者巩固加深对基础概念的理解,提高综合运用知识的技能和解决实际应用问题的能力。本书可供电子、通信、自动化、计算机等学科的研究生学习辅导之用,也可供相关专业和领域的教师和科研人员参考。
本教材自2012年12月出版发行以来,受到了使用本教材的广大教师与学生的较好评价,同时也提出了个别问题,我们在教学中也发现了一些值得改进的地方.为了使本书更加有利于教师讲授和学生学习,我们在广泛征求使用者意见、虚心吸纳同行建议的基础上,对本教材进行了一些修改. 再版教材保留了版的基本体系,在内容上作了一些局部调整和增减改进.其中变动较大的是删掉了第四章中矩母函数的有关内容,增加了条件数学期望这一节的内容,这主要是考虑到本教材的适用对象是经济管理各专业的本科生,而在学生学习金融、保险精算、经济管理等理论时会接触到有关条件数学期望的概念.另外,我们也对个别例题与习题作了一定的调整,目的是使得例题、习题与学习内容更加匹配. 本教材的修订,得到了使用本教材的广大教师与学生的关心、
本书根据“工科本科数学基础课程教学基本要求”并结合精品课程建设的需要,集编者多年工科概率论与数理统计的教学实践经验编写而成。 本书分三大部分,共10章。其中第1章至第5章为概率论部分,包括概率论的基本概念、*变量及其分布、多维*变量及其分布、*变量的数字特征和大数定律与中心极限定理。第6章至第9章为数理统计部分,包括数理统计的基本概念、参数估计、假设检验和线性回归分析。第10章为数学实验部分。前9章均配备了适量的习题,书后附有各章习题的参考答案及简明提示,第10章为学生提供了自己动手探索式的实验平台,通过实验和回答每个实验结论部分的有关问题,巩同加深对有关理论和方法的理解,这不失为一种有益的探索。 本书体现了“多统计、少概率、重应用”的基本精神,全书结构合理、逻辑清晰、例题习题丰富,
单位根检验是研究经济和金融时间序列平稳性的一种基本方法,也是变量之间协整检验、因果关系检验以及建立ARMA模型或ARIMA模型的基础工作。利用现成的软件,常用的单位根检验-ADF(DF)检验和PP检验- 更是被方便地用于实证分析,就其简单的检验程序和易操作性,称之为“傻瓜检验法”并不过分。这些检验可靠吗? 其检验结果是否会给人们带来误导?ADF(DF)检验与PP检验那一种更可靠?它们的适用范围如何?如何合理设定原假设、选择检验式?如何改进已有的检验程序,从根本上解决检验水平的扭曲问题,以大幅提高单位根检验的可靠性?对这些问题,国内外学者尚无人给出令人的满意的答案。笔者在分析已有相关研究在试验设计及检验程序中存在的缺陷的基础上,从改进模拟试验方法入手,系统研究了单位根检验中存在的问题并给了切实可行的解决方法。
本书给出了《概率论与数理统计》第5版(韩明主编,同济大学出版社)中大多数习题的详细解答。作为补充,还给出了与原教材中的例题、习题不重复的一些典型例题,选取近些年 全国硕士研究生人学统一考试数学试题 (概率统计部分)的部分 考研真题 ,并给出了详细解答。原教材中有一些计算、画图是用MATLAB软件来实现的,本书中也有个别习题是用该软件来实现的。本书既可以与原教材配套使用,也可以单独使用。本书可作为高等院校各专业(非数学类) 概率论与数理统计 课程的学习辅导书。