本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
王跃钢编著的《动态数学模型测试建模方法》系统地介绍了动态数学模型测试建模的概念、理论与应用技术,内容包括建模方法基础知识、建立动态数学模型的频域方法和时域方法、测试数据时间序列分析建模法以及非平稳数据建模方法等。 《动态数学模型测试建模方法》不但注重基础理论的讲解,也注重工程算法的研究。书中的应用实例均取自作者的研究成果。 《动态数学模型测试建模方法》可作为工科高等院校控制类专业高年级本科生和研究生的教材,也可作为该领域科技工作者的参考书。
王跃钢编著的《动态数学模型测试建模方法》系统地介绍了动态数学模型测试建模的概念、理论与应用技术,内容包括建模方法基础知识、建立动态数学模型的频域方法和时域方法、测试数据时间序列分析建模法以及非平稳数据建模方法等。 《动态数学模型测试建模方法》不但注重基础理论的讲解,也注重工程算法的研究。书中的应用实例均取自作者的研究成果。 《动态数学模型测试建模方法》可作为工科高等院校控制类专业高年级本科生和研究生的教材,也可作为该领域科技工作者的参考书。
王跃钢编著的《动态数学模型测试建模方法》系统地介绍了动态数学模型测试建模的概念、理论与应用技术,内容包括建模方法基础知识、建立动态数学模型的频域方法和时域方法、测试数据时间序列分析建模法以及非平稳数据建模方法等。 《动态数学模型测试建模方法》不但注重基础理论的讲解,也注重工程算法的研究。书中的应用实例均取自作者的研究成果。 《动态数学模型测试建模方法》可作为工科高等院校控制类专业高年级本科生和研究生的教材,也可作为该领域科技工作者的参考书。
王跃钢编著的《动态数学模型测试建模方法》系统地介绍了动态数学模型测试建模的概念、理论与应用技术,内容包括建模方法基础知识、建立动态数学模型的频域方法和时域方法、测试数据时间序列分析建模法以及非平稳数据建模方法等。 《动态数学模型测试建模方法》不但注重基础理论的讲解,也注重工程算法的研究。书中的应用实例均取自作者的研究成果。 《动态数学模型测试建模方法》可作为工科高等院校控制类专业高年级本科生和研究生的教材,也可作为该领域科技工作者的参考书。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
《运筹学》是在徐渝教授主编的两套运筹学教材(《运筹学》(上),清华大学出版社,2005;《运筹学》,陕西人民出版社,2007)的基础上修订和改编而成的。目的是满足经济管理类各专业本科生的运筹学教学要求
本书稿内容涉及大学数学系应用数学和统计学专业本科生的运筹学课程,可作为数学系教材,也可作为大学管理科学系教材或教学参考书。本书稿内容涵盖数学规划的基本理论和方法,以比较直观易懂的方式循序渐近地讲解理论
《运筹学(第四版)》在第三版的基础上修订完善而成,主要内容有线性规划、整数线性规划、非线性规划、动态规划、图与网络分析、网络计划技术、排队论、决策分析、对策论等。第四版继续保持了前三版的厚理论、宽口径、理论联系实际的特点和精炼、严谨的风格,第三版的绪论精炼为运筹学简介,作为引言,并结合当前的研究热点——复杂网络及大数据分析,在“图与网络分析”中增加了“复杂网络简介”,在“对策论”中增加了“网络对策”。此外对部分章节的内容和习题根据需要进行了增删或修改。习题分为(A),(B)两部分,难度有所差异,可供读者选择。教材配套的数字课程包含各章相关的应用实例和程序。《运筹学(第四版)》可作为数学与应用数学、信息与计算科学、金融数学等专业的运筹学课程教材,也可作为管理、系统工程等专业的专
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书为应用型本科院校《数学建模》普及性教育教材。内容包括数学建模概论、日常生活中的数学模型、微分方程模型、*化模型、初等概率模型、图论初步及其应用、层次分析法及其应用等七章。各章配有适量的练习题,书末附有练习题参考解答或提示。本书特点;难易度比较适中,符合应用型本科院校大学生的数学基础;问题提法比较新颖,符合时代气息;问题研究具有实际意义或理论价值;问题分析透彻,通俗易懂,趣味性强,便于自学。 本书可作为应用型本科院校理工科及经济类各专业《数学建模》课程的教材,也可供参加全国大学生数学建模竞赛的学生、数学爱好者及科技工作者参考。
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的论文,对相关的问题做深入细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》针对2003年及2004年MCM/ICM竞赛的6个题目:特技演员的安全问题、伽马刀治疗方案问题、航空行李扫描策略问题、指纹的性问题、快速通过系统设计问题以及校园网安全措施的优化配置问题进行了解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》内容新颖、实用性强,可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时还可供研究相关问题的教师和研究生
《运筹学》是在徐渝教授主编的两套运筹学教材(《运筹学》(上),清华大学出版社,2005;《运筹学》,陕西人民出版社,2007)的基础上修订和改编而成的。目的是满足经济管理类各专业本科生的运筹学教学要求
本书是经济管理类各专业适用的运筹学辅导教材。本书包括两个部分:部分是运筹学各章节习题类型归纳与解析;第二部分是运筹学习题库,这部分的题全部都给出了正确的答案,有的还给出了解题的全过程,为学习运筹学的同学们提供了极大的选择空间。本书题材和习题取自全国高校广泛使用的清华大学出版社出版的《运筹学》和人民大学出版社出版的《运筹学通论》。 本书两个部分内容安排合理,便于学习运筹学的各个层次的同学们自学,亦可作为运筹学教学参考书。
运筹学的根本目的是寻找解决形形色色的实际问题的一个“解”。运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质;运筹学的学习和入门不需要艰深的数学知识做基础,仅需微积分、线性代数和概率论的一些基本知识。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》共分13章,內容包括线性规划、对偶理论、整数规划、运输问题、多目标规划、目标规划、动态规划、非线性规划、图论、决策论、对策论、存贮论、排队论、统筹方法等。各章都附有练习题,并提供了较详细的参考答案。附录介绍了当今流行的计算化问题的LINGO软件。 《运筹学教程(第二版)/普通高等教育“十二五”规划教材》可作为财经类专业本科生、研究生的必修或选修运筹学课程的教材,也可作为相关领域读者学习运筹学的参考书。
合作博弈是博弈论中的重要内容、但目前国内出版的博弈论教材多以非合作博弈为主,对合作博弈不涉及或很少涉及。施锡铨编著的《合作博弈引论》不但纠正了国外学者在定理证明中的若干致命错误,而且对于国外相关书籍上
今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。