本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
本书是经济管理类各专业适用的运筹学辅导教材。本书包括两个部分:部分是运筹学各章节习题类型归纳与解析;第二部分是运筹学习题库,这部分的题全部都给出了正确的答案,有的还给出了解题的全过程,为学习运筹学的同学们提供了极大的选择空间。本书题材和习题取自全国高校广泛使用的清华大学出版社出版的《运筹学》和人民大学出版社出版的《运筹学通论》。 本书两个部分内容安排合理,便于学习运筹学的各个层次的同学们自学,亦可作为运筹学教学参考书。
王期千、刘深泉所著的《数学建模思路简析(美国数学建模竞赛试题讨论)》依托美国数学建模竞赛的一些有代表性的选题,简略地谈谈建模的思路问题。这些选题肯定无法覆盖整个数学模型的类型,但在实际应用中,仍具有较典型的意义。我们并不会把完整的模型具体地写出,因为这不是我们写此书的目的。本书只对重要的部分加以分析,把模型的大纲写下,并记录一些相关的方法。
由*高教司和中国工业与应用数学学会主办的全国大学生数学建模竞赛一直受到广大同学的热烈欢迎,不断健康地向前发展,有利于培养学生解决实际问题的能力、创新意识及合作精神,有力地促进了高等院校的教学改革,已经发展成为国内规模*的大学生学科性竞赛活动。本书第四版在2008年第三版的基础上进行了补充与修订,收集了1992年以来有关竞赛的文件、赛题、参赛及获奖情况、组织工作经验及学生收获等,是对我国大学生数学建模竞赛20年来发展历程的初步总结。 本书可供组织和参加数学建模竞赛的师生参考,也可供有关教育行政人员等查阅。
本书为应用型本科院校《数学建模》普及性教育教材。内容包括数学建模概论、日常生活中的数学模型、微分方程模型、*化模型、初等概率模型、图论初步及其应用、层次分析法及其应用等七章。各章配有适量的练习题,书末附有练习题参考解答或提示。本书特点;难易度比较适中,符合应用型本科院校大学生的数学基础;问题提法比较新颖,符合时代气息;问题研究具有实际意义或理论价值;问题分析透彻,通俗易懂,趣味性强,便于自学。 本书可作为应用型本科院校理工科及经济类各专业《数学建模》课程的教材,也可供参加全国大学生数学建模竞赛的学生、数学爱好者及科技工作者参考。
本书精选反映当代科技进步和社会发展的21个问题作为案例,以“问题驱动”的形式详细讲解建立数学模型的思路、方法和步骤,并给出问题的解决方案。在所选的案例中,有的是“中国大学生数学建模竞赛”、“美国大学生数学建模竞赛”的赛题,也有的是根据赛题改编的,还有一些其他问题,涉及的数学方法主要有微分、积分、代数、统计、概率、*化、微分方程、分形几何、拟合、插值、灰色理论、图论及现代优化算法等。另外,还有一些物理方法。为便于读者学习和训练,本书针对不同案例数学建模所需的数学理论和方法,有侧重地分别介绍相关的数学知识。除个别计算比较简单的案例外,都在案例解答中给出了计算程序。《数学建模案例》案例特色鲜明、涉及范围广阔,内容讲解紧凑、明了,对读者掌握分析实际问题建立数学模型大有帮助,可作为
由中国运筹学会编著,介绍了运筹学学科发展情况,并对本学科的进展做了全面而准确的总结。学会对所负责的学科发展研究初稿进行研讨及学术交流后,为研究成果的后完成提出实质性修改意见和建议。整套丛书的特点:,确保权威性,注重研究工作的质量,确保研究报告为反映各学科发展情况的*权威性的指导性丛书;第二,体现前瞻性,学科涉及面较大的不要求面面俱到,应注重体现*热点、前瞻和重大学术进展;第三,将2007年第四季度学科发展的内容纳入进去,做到严谨、完整;第四,时效性好;第五,整体性强。
《运筹学》是高等院校理工科、管理学科和经济学科等学科各专业学生的必修课和专业基础课,也是这些专业硕士研究生入学考试的一门考试科目,也是参加全国大学生数学建模竞赛的选手的必修课程。它在自然科学、社会科学、金融、经济学等各方面都有着广泛的应用。为了帮助广大大学生扎实地掌握运筹学的精髓和解题技巧,提高解答各种题型的能力,我们根据清华大学编写的《运筹学》(修订版)编写了本书。 全书由以下几个部分组成: 1.概念、定理及公式:列出了各章的基本概念,重要定理和重要公式,突出了必须掌握或考试中出现频率较高的核心内容。 2.重点难点祥解:教材中课后习题丰富、层次多,许多基础性知识可以从各个角度帮助学习者理解基本概念和基本理论,因此,我们对课后习题全部给出了详细的解答。 3.典型例题精解: