本书叙述算子代数的基本理论。关于von Neumann代数(ω*-代数)介绍了基本概念、拓扑方面的分析、分类理论、因子理论、Tomita-Takesahi理论、von Neumann代数的 Borel空间以及约化理论等。关于c”-代数介绍了基本概念、GNS构造、*表示理论、公理的理论、张量积理论以及(AF)代数等。 本书可供数学专业的研究生、大学教师以及研究工作者阅读和参考。
由中国运筹学会编著,介绍了运筹学学科发展情况,并对本学科的进展做了全面而准确的总结。学会对所负责的学科发展研究初稿进行研讨及学术交流后,为研究成果的后完成提出实质性修改意见和建议。整套丛书的特点:,确保权威性,注重研究工作的质量,确保研究报告为反映各学科发展情况的*权威性的指导性丛书;第二,体现前瞻性,学科涉及面较大的不要求面面俱到,应注重体现*热点、前瞻和重大学术进展;第三,将2007年第四季度学科发展的内容纳入进去,做到严谨、完整;第四,时效性好;第五,整体性强。
本书从经济学、管理学的角度,系统地介绍了运筹学的重要分支,主要内容包括线性规划、对偶理论、运输问题、目标规划、整数规划、非线性规划、动态规划、图与网络分析、网络计划、排队论、存储论、对策论、决策分析等。本书尽量避免复杂的理论证明,力图通俗易懂、简明扼要地讲解运筹学的基本原理及其方法;试图以各种实际问题作为背景引出运筹学各分支的基本概念、模型和方法,并侧重各种方法及其应用。为便于读者自学,各章末均设有本章小结,以及供读者巩固提高的练习题。书末附有部分习题参考答案。 本书可作为经济类、管理类各专业的本科生、研究生教材,也可供各类管理人员及相关人员参考。
智能优化算法是指通过计算机软件编程模拟自然界、生物界乃至人类自身的长期演化、生殖繁衍、竞争、适应、自然选择中不断进化的机制与机理,从而实现对复杂优化问题求解的一大类算法的统称。李士勇编著的《智能优化算法原理与应用》主要介绍模糊逻辑推理算法、神经网络学习算法、遗传算法、模拟退火算法、禁忌算法、人工免疫算法、人工蚁群算法、微粒群算法、混沌优化算法、量子优化算法,以及智能优化算法在函数优化、聚类分析、系统辨识、路径规划、航迹规划等方面的应用。 《智能优化算法原理与应用》可作为高校自动化、计算机、系统工程、管理工程、人工智能等相关专业研究生学习用书,也可供相关专业的科研人员及工程建设人员学习参考。
本书系统介绍互连网络拓扑结构设计和分析中的基本组合理论和方法。内容包括网络与图论的基本概念,网络性能的基本度量;网络设计的基本原则和方法(如线图,Cayley和笛卡儿方法);某些著名的网络拓扑结构(如超立方体网络,de Brujin网络,Kautz网络,循环网络等)和它们的基本结构性质以及各种推广;容错网络分析中的基本度量参数(如路由转发指数、容错直径、宽直径、限制直径、距离控制数、限制连通度)的基本理论、研究进展和*成果。 本书可作为高等学校和研究所计算机、网络通信和应用数学专业研究生的阅读,还可供从事理论计算机和互连网络的研究人员、工程技术人员和爱好者参考。