《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏很小二乘
本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加外数学建模竞赛的指导用书。
《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏最小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。全书系统全面,各章节相对独立。《数学建模算法与应用(第2版)》所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。
本书是一本指导大学生全方位备战数学建模竞赛的辅导书,从多角度介绍了数学建模及相关竞赛的背景知识;按照参赛流程解答了数学建模竞赛的常见问题;介绍了数学建模竞赛中常用的软件;讲解了数学建模的常用模型;精选了典型赛题进行详解;邀请了获奖学生和指导教师分享成功经验;介绍了数学建模竞赛过程中常用的网站。 本书在解答数学建模竞赛中的常见问题时,不仅解答了组建团队、赛前准备和时间安排等问题,还解答了文献检索、撰写论文及论文排版的相关问题,旨在使读者对数学建模的整个流程有非常清晰的认识。 本书不仅介绍了历年数学建模竞赛中常用的方法,分析了相关的赛题,还详解了实现的程序代码,让学生真正做到学以致用,而不是纸上谈兵。本书还邀请了获奖参赛队和指导教师,从不同的角度分享比赛中的成功经验,为参
本书共分七章。章数学模型。第二章数学建模的意义,第三章数学建模的思维方法;第四章数学建模的非逻辑思维方法;第五章数学建模的机理分析方法;第六章数学建模的数据分析方法;第七章数学建模的学科知识方法。本书可作为高等师范院校教育学院、老师进修学院数学专业及国家张、省级中学数学骨培训班的教材或教学参考书。
本书内容按照数学知识的由浅入深分成了四个部分。基本分析部分介绍了非线性系统的基本概念和基本分析方法;反馈系统分析部分介绍了输入-输出稳定性、无源性和反馈系统的频域分析;现代分析部分介绍了现代稳定性分析的基本概念、扰动系统的稳定性、扰动理论和平均化以及奇异扰动理论;非线性反馈控制部分介绍了反馈控制的基本概念的反馈线性化,并给出了几种非线性设计工具,如滑模控制、李雅普诺夫再设计、反步法、基于无源的控制和高增益观测器等。全书已根据作者2011年2月所发勘误表进行了内容更正。 读者对象:本书既可以作为研究生学期非线性系统课程的教材,也可以作为工程技术人员、应用数学专业人员的自学教材或参考书。
薛定宇和陈阳泉编著的《高等应用数学问题的MATLAB求解》首先介绍了MATLAB语言程序设计的基本内容,在此基础上系统介绍了各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等,还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。《高等应用数学问题的MATLAB求解》可作为高等学校理工科各专业本科生和研究生学习计算机数学语言的教材和参考书,也可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
本书讲解了平面几何中的解题方法与技巧。
《动力系统反控制方法及其应用》详细论述了离散时间系统、连续时间系统和切换系统反控制(即混沌化)的研究方法与应用及其电路设计与实现,共20章。~9章主要介绍离散时间系统反控制,包括数学预备知识与混沌的基本概念,离散时间系统反控制的Chen-Lai算法及其电路实现,离散时间系统反控制的Wang-Chen算法,单峰和多峰映射,离散正弦多峰映射,线性取模运算多峰映射,混沌控制与同步,离散时间系统的单变量反控制、同步及其在混沌序列密码中的应用,高维广义超混沌猫映射及其在分组图像加密中的应用等。0~19章主要介绍连续时间系统与切换系统的反控制,包括连续时间系统与切换系统反控制方法概述,连续时间线性系统的反控制,连续时间非线性系统的反控制,三维切换系统的反控制,四维切换系统的反控制,具有指标1鞍焦平衡点和相同特征平面的
《建筑中的数学之旅》带领读者享受了一次世界最壮观建筑物背后的数学之旅,探讨了基础数学与建筑的相互作用,并深入观察了建筑物的美学、历史和结构。《建筑中的数学之旅》围绕两条历史叙事主线展开介绍。基本叙事主线主要集中在西方某些建筑的建筑形式(几何学、对称性及比例)和结构(推力、负载、张力、挤压问题)上,涵盖从金字塔到20世纪的标志性建筑,争取用赫赫有名的例子说明建筑的重要特征。第二条叙事主线从历史的角度逐步阐述当前的初等数学,包括欧几里得几何知识、三角学、向量的性质、二维和三维解析几何,以及微积分基础。Hahn旨在将两条叙事主线交织在一起展示它们是如何互相影响的。另外,他还通过彩图1拼贴了各种历史性建筑(比例相同),给出了《建筑中的数学之旅》的快速导览,并在书中探讨了这里的许多建筑,特别对其穹顶、
《投入产出及其扩展分析》较为全面地介绍了投入产出及其扩展分析的知识体系及相关进展。全书共分十章,其中至第四章属于投入产出分析的基本内容,包括投入产出分析的核算基础、投入产出分析的基本原理、投入产出表的编制方法、投入产出表的分析与应用;第五至第十章属于投入产出扩展分析的内容,第五、第六章属于应用范围的扩展,包括地区与地区间投入产出模型、部门与企业投入产出模型;第七、第八、第九、第十章属于分析内容的扩展,包括动态投入产出模型、投入产出优化模型、存量投入产出模型、投入产出扩展模型。《投入产出及其扩展分析》可作为经济与管理研究生和高年级本科生的教材,也可作为经济管理人员的学习参考书。
本书讲述管理科学研究的方法,介绍了数理统计、计量经济、多元统计与运筹优化模型及其应用。本书分为两篇:数理统计、计量经济与多元统计篇包括一些常用的变量分布、参数估计、假设检验、线性回归等一些常用内容和计量经济模型的检验,以及主元分析、因子分析、聚类分析、判别分析等多元统计分析及其应用等内容;运筹优化篇向读者介绍常用的优化模型及共应用,主要包括线性规划模型、整数线性规划模型、非线性规划模型、非线性规划模型、多目标决策模型、神经网络模型以及模拟决策模型及其应用等内容。 本书内容充实,通俗易懂,涉及面广。可作为广大、中专院校各类学生学习数据、模型与决策、商务决策数量方法、管理科学、运筹学、数理统计学、计量经济学、多元统计学等课程的教材或参考书。也可供从事数量经济分析方法的企业管理
金融投资是现代社会最活跃的经济活动之一。自1973年出现Black-Scholes公式以来,金融界以的速度接受数学模型和数学工具,于是出现了数学、金融、计算机和全球经济的融合。在金融学自身的吸引力和众多使用者需求的双重影响下,美国各大学纷纷开设了相应的课程,本书正是顺应这种趋势编写的。 本书主要讲解建模和对冲中使用的金融概念和数学模型。从金融方面的相关概念、术语和策略开妈,逐步讨论了其中的离散模型和计算方法、以Black-Scholes公式为中心的连续模型和解析方法,以及金融市场的风险分析及对冲策略等方面的内容。 本书作为金融数学的基础教材,适用于相关专业的本科生和研究生课程。
本书主要介绍非线性时间序列理论和方法的一些研究成果,尤其以近十年来发展起来的非参数和半参数技术为主本书不仅对这些技术在时间序列状态空间、频域和时域等方面的应用给出了详细的介绍,同时,为了体现参数和非参数方法在时间序列分析中的整合性,还系统地阐述了一些主要参数非线性时间序列模型(比如ARCH/GARCH模型和门限模型等)的近期研究成果。此外,书中还包含了一个对线性ARMA模型的简洁介绍为了说明如何运用非参数技术来揭示高维数据的局部结构,本书借助了很多源于实际问题的具体数据,并注重在这些例子的分析中体现部分的分析技巧和工具。阅读本书只需要具备基础的概率论和统计学知识。 本书适用于统计专业的研究生、面向应用的时间序列分析人员以及该领域的各类研究人员。此外,本书也对从事统计学的其他分支以及经济计