本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书主要介绍非线性控制系统的基本理论和一些*进展,全书分为八章.章介绍相关的数学预备知识,包括度量、流形、稳定性等:随后的章节主要分为两部分:部分包括第二章和第三章,主要讨论基于微分几何方法的非线性控制系统的分析:第二部分包括其余章节,主要讨论非线性系统的镇定和抗干扰控制问题.其中第二章集中考虑系统的可控性和可镇定性等系统的基本控制特性:第三章处理对非线性系统的化简,包括解耦和线性化。第四章和第五章分别考虑非线性系统的局部和全局镇定控制设计:第六章和第七章分别研究非光滑系统(即切换系统和有限时间稳定系统)的控制问题:后的第八章涉及非线性系统的H∞控制等。 本书可作为从事控制理论及其应用的科研工作者、工程技术人员、高等学校教师和研究生的教科书或参考书。
本书系华南理工大学出版社组织编写的“土木工程系列教材”之一,目的是使读者较好地掌握有限元法的基本原理,编程方法和在工程实际中的初步应用。 本书共9章,包括弹性力学平面问题的常应单元、平面有限元法程序设计、高阶单元、空间问题、杆系结构、板的弯曲、动力问题、弹塑性问题的有限元法,后介绍了大型通用有限元程序的使用和前后处理方法。 本书可作为高等院校土木工程专业本科生的教材,同时可供其他专业的本科生和研究生选用,也可供有关工程技术人员和教师参考。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
《计算流体力学原理》是为从事流体计算的研究生、科研人员、工程师和物理学家而写。《国外数学名著系列()9:计算流体力学原理》首先介绍计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;然后讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难;研究奇异扰动问题的一致性和效率,指出大雷诺数情形下计算流的方法;特别讨论了稳定性分析,给出在许多实际算法中有价值的稳定性条件,其中某些条件是新的;叙述计算可压缩流和不可压缩流的统一方法;给出了狭窄水漕方程的数值分析;论述了双曲守恒律;讨论了戈杜诺夫阶障碍及如何利用有限斜率格式加以克服。简要介绍了运用克雷洛夫子空间理论和多重网格加速的有效的解的迭代方法。《国外数学名著系列()9:计算流体力学原理》还包括许多新
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
MathematiCa是当今世界上*秀的数学软件之一,由于它所具有内容丰富、功能强大、界面友好、使用简单方便等突出优点,因而在世界范围内受到广泛好评。 MathematiCa所能处理的内容十分丰富,几乎涵盖了应用数学各主要分支,特别是加强了理工科大学数学大纲中所规定的那些部分。不仅可以满足理工科院校师生在数学教学上的需要,同时也能满足科技工作者求解一般数学问题的要求,现在用户范围还在不断扩大,甚至拓展到银行、金融、政府、企业等部门。 Mathematica的功能主要有数值计算、符号运算、图形处理以及程序设计四大方面。其中符号运算的功能十分突出,是其他计算机高级语言所无法比拟的。有的高级语言(例如Matlab)虽也具有符号运算能力,但都不及MathematiCa的强劲和完善。因此MathematiCa特别受科技部门与高等院校的重视。