如何一眼识破庞氏骗局、做好理财、投资? 如何在购房贷款时做出*选择? 如何增加简历通过初筛的几率? 如何规划公司的发展曲线? 更重要的是, 如何提升自己的认知水平? 如何改变自己的思维方式? 如果你也关注这些问题,希望借助数学思维来更好地提升自己、认知世界,这本书希望你一定要看。 这是一本写给所有人的数学通识讲义,书中通过关键知识点串联起整个数学体系,帮助你逐步建立起属于自己的数学知识结构。而贯穿全书的数学发展史,其实就是人类认知的发展史,你可以借此逐步训练自己的认知:从直观到抽象,从静态到动态,从宏观到微观,从随意到确定再到随机。
数学是一门求真与求美的学科。数学对于解释大自然的纷繁现象具有基本的重要性, 兼具诗歌与散文的内在气质。 《数理人文》为数学家丘成桐先生主编的一系列科普读物,以数学、物理及工程为经,人文艺术为纬,旨在引导读者领略数理之美,感悟人文之魅力,启迪数理与人文相结合之思维,培养广泛的兴趣和独立思考能力。
本书为日本数学家、菲尔兹奖得主广中平?v的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、亲子教育中培养创造性思维的原则与方法。本书是广中平?v先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
说到三角函数或正弦、余弦、正切等,为了应付考试而死记硬背公式但并不十分明白的人也不在少数。也有人明明学习了,但觉得在生活中一次也没有用到过三角函数。 其实人们生活在现代社会,肯定受到过三角函数的 恩惠 。因为从网络上的动画制作到地震速报,很多技术的基础都是三角函数。 本书通过对三角函数的起源与使用方法,以及从三角函数中诞生的实用数学的 代表选手 ?? 傅里叶分析 的原理等进行挖掘,形成了内容较为充实的一册 三角函数 科普读物。 第一章在说明三角函数之前,对三角形的性质及使用方法,以及三角函数的起源进行介绍;第二章则对三角函数的基础知识(三角比)进行清晰的解释;在第三章中介绍了相关的重要定理并对古代数学家进行的三角函数研究进行介绍;在第四章中脱离 三角形 的束缚,对三角函数的定义进行扩展,可以通
本书通过作者的生活经历、思考和爱好,以及对艺术的理解,从一个全新的角度谈音乐和数学的关系。主要内容包括:历史上的音乐数学,声学,乐理、乐器、曲风和数学的关系,以及数学和计算机音乐。本书较为全面、深入地展示数学和音乐关系那吸引人的神奇。该书涉及大量的数学音乐,其中也包括非常动听的AI谱曲。这本书视角之独特、内容之新颖,可使不少人文艺鉴赏的同时,改变对数学枯燥的偏见,必将起到积极的作用。本书适合有高中以上数学基础的音乐爱好者。
许多人在中学数学课堂上学习过 微积分 。 微积分是用来计算 变化 的数学,在计算如位置的变化、速度的变化、股价的变化等多种变化时,微积分发挥着重要作用,甚至可以说微积分几乎是不可或缺的。 本书在第1章中,对微积分的精髓进行了精要讲解。在接下来的第2章中,追溯微积分诞生的时代背景及数学家的思考,探究复杂的微积分符号和计算方法。另外,还会介绍牛顿和莱布尼茨之间关于微积分发明权归属之争、牛顿的巨著《自然哲学的数学原理》,以及微积分之谜等有趣的话题。最后,第3章收录了微积分的计算问题和微分方程式等应用实例,可以从中切实感受到微积分的作用。
高斯被誉为 数学王子 ,是古往今来三大数学家之一,其实他的工作遍及物理学和天文学。在高斯拥有的较多传记中,本书被誉为是广泛和深入的、也是部高斯的完整传记。作者邓宁顿的老师是高斯的曾孙女,在她的鼓励下,采访了美国很多高斯的后代,具有很多手的资料。本书堪称一部展现高斯的家族、生活和工作的 百科全书 ,也是为19世纪欧洲科学史提供了一个视角。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而美的数学(the best mathematics)则如文学 它将故事栩栩
本书是Z负盛名的世界科普经典著作之一,它曾引领千千万万的读者进入科学世界。许多人都是因为在十几岁的时候读到这本书,才首次真正领略了科学的奇迹和奥秘。作者以其幽默的笔调和高超的教学技巧,探讨了宏观世界和微观世界、数论、空间和时间的相对性、熵、基因、原子结构、核裂变和太阳系的起源等主题。无论你的科学知识水平如何,你都会从这本不同寻常的书中获得许多乐趣和激励。它是任何对科学世界充满好奇的人的书。
在《x的奇幻之旅》中,*数学家、《纽约时报》专栏作者史蒂夫?斯托加茨,引领我们踏上一段领略伟大的数学思想的赏心悦目之旅。沿途中你会看到数学如何与文学、哲学、法律、医学、艺术、商业彼此交融,甚至流行文化也能以我们意想不到的方式和数学共舞。
法国数学家笛卡儿提出被称为现实中不存在的 想象中的数 。这就是高中数学中涉及的 虚数 概念。虚数有何奇妙之处呢?无论是正数还是负数,平方之后必然为正;而虚数则是 平方为负 ,这样的数在哪里都找不到。 为什么要学习虚数呢?这是因为在数学中虚数发挥着极其重要的作用,如果没有虚数,那数字的世界就不完整了。而且即使是对于解析微观世界的量子力学而言,虚数也是不可或缺的存在。如果没有虚数,甚至连1个电子的运动都无法正确得知。
你是擅长数学还是害怕数学呢?可能有很多人对数学持有这样的印象?? 不知道在学校学到的数学有什么用 。在现代社会里,各种各样的数学工具非常丰富。本书对其中的 对数 和 向量 这样非常实用的工具进行介绍。 对数 作为可以简化计算的工具在16世纪就已诞生,在没有电子计算机的时代,对数成为自然科学发展的基石。到今天,对数除了作为单纯的计算工具,还出现在现代科学的各种场合里,支持社会发展。 向量 是表述 同时具有大小和方向的量 的概念,在包含物理学在内的很多科学领域起到巨大作用。
你是否曾被数学课本中复杂的公式和枯燥的计算弄得晕头转向?是否觉得数学公式仿佛 天书 ,只能靠死记硬背?是否认为自己没有天赋,永远学不好数学?事实并非如此,作者通过亲身经历,揭示了数学的真正魅力,证明了每个人都能学好数学。 作者通过本书挑战了我们对数学的传统认知,打破了束缚我们思维的枷锁。作者不仅分享了自己如何从一个数学 差生 成长为热爱数学的优等生的故事,还提供了一系列的学习方法和策略,帮助孩子建立起对数学的积极态度。她强调,数学不仅仅是一门学科,更是一种思维方式,一种解决问题的工具。 全书共分为三个部分,第一部分揭示了阻碍孩子们学习数学的误区,比如 速度就是一切 和 只要学会了解题技巧,就能学好数学 。然后,作者在第二部分提供了一系列的学习方法,包括建立归属感、使用图形和实物、简化问
近来,被称为 数据科学家 的研究者备受关注,充分运用数据进行分析,变得越 来越重要。这种活用数据的基础便是 统计与概率 。 统计与概率,不仅对于研究者,对于生活在现代社会的所有人来说都是可以在现实 生活中发挥重要作用的知识。在日常生活中,正确解读数据,从而进行合理的判断,也 是依靠概率和统计的思考方法。 在本书中,以我们身边的话题作为案例,介绍以统计与概率为基础的重要数学方法, 并对于因人工智能的蓬勃发展而备受瞩目的 贝叶斯统计 ,也介绍其思考方法与应用实 例。此外,本书还对概率论起源于 17 世纪欧洲的博彩问题,以及 统计大师 汉斯?罗 斯林博士的访谈、随机和随机数的深奥的问题等进行了介绍,希望与读者一同洞悉统计 与概率的本质。
套书是系列丛书《奇妙的数学折纸》中的第1、2册。全书介绍了19个数学折纸,其中第1册10个,第2册9个。从基本纸质制作教程开始,并配有数学原理的解析,书中的每一个折纸作品都分解为4~5个大板块:折纸教程、如何玩、对教师的建议、思考题和数学内涵解读。从怎么折,到所涉及的数学原理都讲解得很详细。书中配有折纸阶段以及如何玩的视频,让书中难点可以用更直观和动态的视频来解疑。对小学和初中年龄段的学生来说是一种寓教于乐的新型科普类书籍。也适合学校作为教辅书籍拓展学生和老师的视野。
证明是数学思想中最重要,也是极具开拓性的特征之一。没有证明,就无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
在这本引入入胜的科普经典中,著名英国数学家斯图尔特用清晰流畅、幽默风趣的语言阐明了群、集合、子集、拓扑、布尔代数等 新数学 的基本概念,他认为理解这些概念是把握数学真正本质的好途径。此外,作者还对函数、对称、公理学、计数、拓扑学、超空间、线性代数、实分析、概率论、计算机、现代数学的应用等主题作了发人深省的讨论。读者无需任何高等数学背景,只需对代数、几何和三角学略知一二,便可读懂此书的大部分内容。读罢此书,你会更清楚地理解现代数学家对图形、函数和公式的看法,以及 新数学 的基本思想如何有助于领会数学的本质。
全书是系列丛书《奇妙的数学折纸》中的第1册。全书介绍了10个数学折纸,从基本纸质制作教程开始,并配有数学原理的解析,书中的每一个折纸作品都分解为4~5个大板块:折纸教程、如何玩、对教师的建议、思考题和数学内涵解读。从怎么折,到所涉及的数学原理都讲解得很详细。书中配有折纸阶段以及如何玩的视频,让书中难点可以用更直观和动态的视频来解疑。对小学和初中年龄段的学生来说是一种寓教于乐的新型科普类书籍。也适合学校作为教辅书籍拓展学生和老师的视野。
《几何原本》是世界上著名、完整且流传广的数学著作,也是欧几里得有价值的传世著作。欧几里得在《几何原本》中系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系 几何学。而《几何原本》也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
我们在生活在一个充满不确定性的世界,从买彩票的运气到股市的波动,从高尔夫球进洞的曲线到明天究竟会不会下雨,如果一本畅销书或一部卖座的电影可以被预测,那么《哈利 波特》为什么会被拒稿9次?如果成功不可以被复制,那么很多连锁企业又是如何获得成功的? 《醉汉的脚步》来自一个描述随机运动的数学术语,当分子飞越空间并不断撞击其他分子或被其他分子撞击时,它走过的路径就如 醉汉的脚步 一样。我们可以用分子的路径来比拟我们的生活,或是我们从大学到工作、从单身到建立家庭、打高尔夫球时从进第1洞到进第18洞之间的过程。作者列纳德 蒙洛迪诺在为我们揭示偶然性的真实本性以及导致我们误判周遭世界的那些心理错觉的同时,也为我们提供一种看待生活的全新视角,帮助我们更智慧、深刻地认识世界,理解生活。
本书主要面向学有余力的小学高年级学生、中学生以及其他数学爱好者,从有趣的数学故事出发,由浅入深地介绍数论、代数、几何和组合数学等主要内容,并对概率、拓扑等内容进行了有益的拓展。同时,本书再现了多个与数学原理相关的历史、文化、科学和艺术场景,展现了数学之美以及数学和人文科学的统一。本书综合趣味性和可读性,以可以启发读者自主思考的方式 提供分析和解决问题的思路,使读者能够举一反三、开拓思维。 本书可以作为学生的课外读物,也可作为数学爱好者进行数学思维训练和补充数学知识的资料。
《数学和数学家的故事》是一部具有一定规模的科普著作。相对目前同类作品,该作品内容更加丰富,语句更为生动,视角更为新颖。李学数以深厚功力,广博知识,创作热情,将一般人认为枯燥的数学问题和数学史、平淡的数学家生涯,深入浅出、趣味盎然地展现出来。第10册介绍了立方和问题、哈密顿回路、非欧几何、数学家丁石孙、格罗滕迪克以及数学家小说等的故事。
本书记载了数学史上各个时期的代表性人物,他们的内心世界、成长经历和成材环境,他们的贡献、思想、个性和生活观念。这些伟大的数学家,有的在人文领域也有杰出贡献,如毕达哥拉斯、海亚姆、笛卡尔、帕斯卡尔、莱布尼茨、庞加莱,有的则个人经历富有传奇色彩,如费尔马、牛顿、欧拉、高斯、希尔伯特、拉曼纽扬、爱多士。此外,本书还就数学与文学、诗歌以及政治的关系,做了深入地探讨。 此次修订,添加了六篇新文章,它们是甲辑的《阿基米德:数学之神》和《冯 诺伊曼:因为他,世界更加美好》,乙辑的《秦九韶,道古桥和 数书九章 》和《罗庚与省身:两位同时代的数学大师》,丙辑《忆潘师》和《我的一生可以看作一个圆 西子湖畔访杨振宁》。同时,也对旧作进行了全面润色,尤以《高斯:离群索居的王子》和《数学家与政治家》等篇充